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ABSTRACT
Theoretical skills imparted during university education in
Embedded Systems often surpass their practical counter-
part. The contribution of this paper is a defined set of prac-
tical skills which bridge the gap between a sound theoretical
education in embedded systems and the skillset acquired
by experienced practitioners in the field. The presentation
of each skill is accompanied by common solution patterns,
state-of-practice technologies, and a set of exercises to pro-
vide practical uptake of each skill. The proposed skillset is
based on consistent observations over the years, of graduat-
ing students performing ”hands-on” projects; the proposed
approach for imparting the skillset is motivated by experi-
ences with Embedded Systems education at The Royal In-
stitute of Technology (KTH) in Sweden.
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1. INTRODUCTION
The term hacker traditionally[38] refers to ”A person who

delights in having an intimate understanding of the internal
workings of a system, computers and computer networks in
particular.” The term is used in a more general sense in this
paper, to refer to a person who complements good theoret-
ical knowledge of embedded systems with a strong compe-
tence in the practical aspects of constructing and program-
ming those systems. Such a person would be ideally suited
for specifying the overall technical architectures for complex
embedded systems, selecting appropriate hardware and soft-
ware stacks for different parts of the system, coordinating
and integrating output from individual contributors (code,
models, algorithms etc.) and in general, bootstrapping and
nurturing the development of a complex embedded system.
As a norm, hacking pushes the boundaries of what is prac-
tically possible and supplements good engineering, which
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deals with applying known knowledge within a set of con-
straints (economic budget, safety, etc.). The embedded sys-
tems hacker, in our portrayal, is differentiated from domain
specific technical specialists by having the ability to make
and execute good system level technical choices. In most
situations the hacker would prioritize the practical ability
to create, while retaining a desire to eventually explore the
theoretical intricacies.

Embedded systems hackers as described above are formed
today, more often than not, by dint of their own enthusiasm
and curiosity. Their practical technical skills are acquired
and honed through multiple projects and each individual
creates (and hopefully updates) his/her own toolbox of tech-
nological solutions and solution patterns which are then re-
peatedly applied to subsequent projects. In every classroom,
there are some motivated students who go beyond the cur-
riculum and tinker and play and teach themselves the tools
and technologies in vogue. They go on to become natural
technical leaders of their projects, and are appreciated in
industry and academia alike. As educators, it is our duty to
stimulate more students to fall into this category.

Therefore, it is worthwhile for embedded systems educa-
tors to inquire into the practical skills and familiarity with
technological solutions that should be imparted via aca-
demic curricula in order to facilitate the creation of such
hackers. This paper suggests a set of such skills and tech-
nological solutions. The suggestions are based on a decade
of experience in building complex embedded systems (e.g.
the Scoop project[52]), discussions and investigation with
industry and academic representatives including in the con-
text of developing an agenda for Cyber-Physical Systems[12,
17], as well as experiences in embedded and mechatronics
education[51, 54], and observations of students who are near-
ing the completion of their academic degrees and involved in
research projects. The presentation of each skill in this pa-
per is accompanied by some relevant solution patterns, cur-
rent technological solutions, and exercises to hone the skill
under consideration. The technological solutions mentioned
are based on state-of-the-art, popular, open source software
and hardware. The target audience is educators developing
curricula for embedded systems education as well as aspir-
ing embedded systems hackers looking to expand their skills
and making themselves more marketable.

The focus of this paper is on embedded systems hardware
and software aspects, especially during the early prototyping
phase of product development.



2. THE TECHNICAL SKILLS SET

2.1 Platforms and functionality distribution

2.1.1 Skill
The term platform as it is used here, refers to the hardware

and software stack(s) in the embedded system. Platforms
typically range from minimal 8-bit microcontrollers which
are programmed on ”bare metal” to more capable 32 (and
sometimes 64) bit Single Board Computers (SBCs) which
run standalone, full-fledged desktop operating systems. Ex-
amples of the latter include ARM® based devices capable
of running a complete desktop Linux distribution. Even
for low end 8- and 16- bit microcontrollers, there is a ris-
ing trend of using tiny operating systems bundled into the
application code. Examples of such operating systems are
FreeRTOSTM[19], Erika Enterprise[18].

A good engineer knows when to use a single high end
microcontroller for all needed functionality and when to split
up the functionality among different platforms with varying
hw+sw stacks. The practical tradeoffs associated with this
decision are sometimes not directly visible. For example,
it is perfectly feasible to use a Linux process to toggle a
GPIO output of a high end microcontroller and generate a
stable PWM signal. A good engineer knows this, but also
knows that it is just vastly simpler to connect a cheap 8
bit microcontroller to the Linux platform and use its built-
in PWM outputs to do so. (In this case, because there is
an effort associated with patching the Linux kernel to make
it hard real-time, possibly writing a hard realtime device
driver for the gpio subsystem and balancing task priorities,
interrupt handlers, concurrency and reentrancy aspects to
ensure a stable software generated PWM waveform.)

Educators need to ensure that students are exposed to
platforms of varying capabilities and that the students are
sufficiently proficient with them to make wise decisions re-
garding their usage. A minimum set of such platforms would
be a tiny 8-bit platform without an operating system, a 16-
bit platform with an operating system that is linked into
the application and a 32 bit platform running a standalone
operating system into which application programs can be
loaded and executed.

The advent of multicore chips and FPGA technology has
changed the game somewhat. With multicore chips, it is
possible, in principal, to group tasks with specific, shared
characteristics into sets and allocate a core to each task set.
This approach then requires due consideration of multicore
related issues, and appropriate capabilities from the oper-
ating systems/hypervisors. FPGAs blur the distinction be-
tween hardware and software and their usage can result in
inherently realtime functions, efficiency gains for compute
intensive functionality as well as optimum functionality dis-
tribution.

2.1.2 Solution pattern
A generalized solution pattern is shown in Figure 1.
The pattern includes a high-end microcontroller with a

standalone, non-realtime operating system(the ”Fat Stack”),
a low end microcontroller for low-level input/output and a
third microcontroller devoted exclusively for realtime tasks.
Compute intensive tasks may be allocated among the mi-
crocontrollers based on their realtime characteristics and re-
source requirements. Depending on intended application,

Figure 1: A generalized architecture pattern

one or more of the microcontrollers may be eliminated and/or
their functionality may be combined into a single microcon-
troller.

While an extensive defense of the pattern is beyond the
scope of this paper, we will return to this pattern repeatedly
in the subsequent sections. For now, the principal takeaway
is that the hacker should be capable of deciding which mi-
crocontrollers, from among those available in the market,
would satisfy the requirements imposed on each of the three
microcontrollers in the pattern. Further, s/he should be
intimately aware of their programming capabilities and lim-
itations. This knowledge can then be repeatedly applied to
(and grown via) multiple projects.

Figure 1 does not really reflect the usage patterns of mul-
ticore chips and/or FPGAs, nevertheless each micrcontroller
shown in the figure may be considered as a core on a multi-
core chip or implemented as an FPGA.

Experiences with more systematic ways of selecting hard-
ware platforms are described in [53].

2.1.3 Technological solutions
For low-level platforms, the Arduino[2] family of micro-

controllers are good candidates. These come in a wide va-
riety of configurations, suitable for varying interfacing re-
quirements.

For medium-level platforms, some candidates are the Rasp-
berry Pi[37] and Beaglebone[3]. These are Single Board

Computers with ARM® based microcontroller and can ex-
ecute the Linux operating system with or without various
realtime patches.

For high-level platforms, candidates would be comput-
ers based on the Intel® Mini-ITX form factor, with multi-
core AtomTM processors, equipped with Solid State Drives
(SSDs). Such configurations can be built with zero moving
parts and are capable of executing standard desktop oper-
ating systems including Microsoft® Windows® and Linux.

Most of the freely available and open source operating sys-
tems today are not yet at the stage where they can leverage
multicore chips in embedded systems for task set isolation.
With Linux, for example, it is possible to set the ’CPU Affin-
ity’ of a task or process to a certain core, but that by itself in
not sufficient to guarantee isolation, performance and timing
characteristics. Some proprietary hypervisors are available
which support isolation of tasks among cores, however their
usage is very closely tied to and dependent on the specific
hardware being used.

Most of the candidate platforms mentioned above have
open hardware designs and can use open source software.
They enjoy the benefit of extensive user communities with
the associated tutorials, mailing lists and support groups,
reference code and designs.



2.1.4 Suggested exercises

1. Download the source code of the Linux kernel, apply
necessary patches, cross-compile and boot it on the
Raspberry Pi/Beaglebone black.

2. Generate a stable PWM waveform using Linux on the
Raspberry Pi/Beaglebone black as well as with an Ar-
duino. Compare the time taken for the background
reading, coding and debugging needed to perform this
task. Repeat the process on both platforms, but this
time for reading a quadrature encoder. Were there any
differences observed? Why?

2.2 Operating systems and bootstrapping

2.2.1 Skill and solution patterns
Theoretical knowledge of the foundations and concepts of

operating systems needs to be complemented by the prac-
tical ability to select a suitable OS and bootstrap it on the
chosen hardware. This skill, in turn, needs to be comple-
mented with knowledge of programming paradigms and li-
braries that are permitted by the OS and suitable for de-
sired functionality. For example, given a particular micro-
controller, which realtime operating system (RTOS) can be
executed on it? Which standard C library functions are safe
to use in a realtime environment and which ones should be
avoided? Which platforms support the co-existence of real-
time and non-realtime tasks and what mechanisms should be
used to prevent them from interfering with each other? How
should realtime tasks be prioritized on a non-preemptible
kernel?

Typically open source operating system parts can be in-
dividually selected and configured to create a board specific
package tailored for the needs of a particular use case. In
such cases, it is an essential skill to be able to identify which
packages will be needed and combine them to create the
application specific OS kernel and userland utilities.

In almost every case, the source code for an embedded
system needs to be cross-compiled. Setting up the cross-
compilation toolchain and build environment is a valuable
skill.

The usage of operating systems is recommended more of-
ten than not, over bare metal programming, wherever pos-
sible. However, the operating systems needs to be carefully
matched with the hardware and it is worthwhile knowing
which OSes are supported on which hardware platforms.

2.2.2 Technological solutions
The Linux kernel can be patched and configured with

a variety of options to achieve varying levels of realtime
behavior. These include configuration options like PRE-
EMPT VOLUNTARY and PREEMPT, a fully preemptive
patch PREEMPT RT[9] and dual-kernel, hard realtime mech-
anisms like Xenomai[46]. Each approach has a tradeoff be-
tween configuration effort, ease of programming and perfor-
mance. Further, each approach imposes its own quirks and
programming patterns, which must be satisfied if the desired
performance is to be obtained.

Projects like Yocto[48] can be used to create custom em-
bedded linux distributions. Alternatively, tools like Debian
Multistrap[13] can be used to create partial operating sys-
tems which can then be customized for specific use cases.

For low end devices, operating systems like FreeRTOS[19]
and Erika Enterprise[18] are available in the form of libraries,
which can be linked with the application being developed.

2.2.3 Suggested exercises

1. Create a minimal Linux distribution based on the Xeno-
mai kernel framework for the beaglebone/raspberry pi.
Use either Yocto Project[48] or Debian Multiarch[13].

2. Create a gcc[20] based cross-compiler toolchain for gen-

erating Linux ARM® binaries on an x86 host running
Microsoft® Windows®.

2.3 Execution of domain specific models

2.3.1 Skill
Experts in domains like signal processing, control engi-

neering etc. use specific tools to model and manipulate the
systems they are working on. A prime example of such a
tool is Matlab®[28] and Simulink®[40], but many others

exist. For better or worse, Simulink® is the de facto tool
used by control systems engineers in the industry. There-
fore, the embedded systems hacker needs the ability to take
a model from such a tool and execute it in realtime when
necessary. For example, a PID controller that is devised as
a Simulink® model may need to be executed in realtime on
a microcontroller.

It is not reasonable to expect the domain expert to manu-
ally write high-quality C or C++ code that implements his
model. The onus of doing this often falls on the system in-
tegrator who has to not only transform the model to code,
but also ensure that assumptions regarding the code’s ex-
ecution (periodicity, latency, memory etc.) are preserved.
The model may need to interface with the real system’s
inputs/outputs and it may evolve rapidly. Therefore the
model->code->execution chain needs to be as simple and
painless as possible.

2.3.2 Solution patterns
There are three approaches for executing domain specific

models.

1. Understand the model’s construction and behavior and
manually replicate it with hand-coding. This approach
is fraught with risk for all but the simplest models and
is rarely used in practice.

2. Automatic generation of code from the model. This re-
quires tool support and the generated code may need
to be manipulated by hand or via scripts before it can
be compiled. This approach is easier, but still requires
that the model assumptions regarding execution prop-
erties (periodicity, latency, memory etc.) are valid.

3. Automatic model execution, also known as rapid (con-
trol) prototyping. Certain tools provide the ability to
execute the model in realtime at the ”push of a button”.
For example, dSPACE[14] systems provide the hard-

ware and software necessary to execute a Simulink®

model in realtime. This approach largely negates the
need to manually mess with generated source code and
execute it under specified constraints. The technical



disadvantage with this approach is the loss of flexi-
bility. The architecture must accommodate the hard-
ware used for model execution and any communication
with the executing model must follow the modalities
dictated by the tool vendor. Quite often, these modal-
ities are rather basic and the architecture must then
include specific adaptation layers to communicate with
the executing model.

Given the convenience of automatic model execution, it
is used quite frequently for function development and pro-
totyping, especially in the industry. The architecture pat-
tern in Figure 1 supports this approach, since it defines a
separate microcontroller for executing realtime code. More
often than not, the realtime code is a control/signal process-
ing model and the separate microcontroller is provided by
a tool vendor e.g. dSPACE AutoBox. (Even if automatic
model execution is not being used, a realtime hw+sw stack
is realized in a specific way and it often makes sense to have
it as a distinct part of the system architecture.)

2.3.3 Technological solutions
Vendors of tools like Simulink® provide fairly capable

code generators like Embedded Coder®[27] for transform-
ing models to source code. The generated code may then
be integrated into the rest of the application code, either
manually or via the build system. One of the open source
equivalents of Simulink®, SciCos[39], has a variety of code
generators but in general, they are either immature or with
limited functionality.

For automatic model execution, the industrial heavyweight
is dSPACE systems[14] which offer tightly integrated hard-
ware and software solutions. The MathWorks also has a so-
lution named Simulink Real-TimeTM[41] which offers some
more flexibility in selecting the hardware. Both these so-
lutions utilize proprietary operating systems which lack the
standard C/C++ language runtimes. This imposes a strong

limitation on the Simulink® model: it may not incorporate
any custom C/C++ code that depends on the availability of
the standard language runtime. In practice, most code that
does anything useful depends on the language runtime.

A lightweight solution for automatic model execution is to
utilize an Arduino[2] board. There exist blocksets and code

generators for both Matlab®/Simulink® and Scicos[39] that
essentially offer a ”push button interface” to execute models
on the Arduino, converting the Arduino into a ”poor man’s
dSPACE”.

2.3.4 Suggested exercises

1. Design a DC motor speed controller in Simulink®.
Manually convert it to C++ code and execute on an
Arduino. Then, use Simulink’s Arduino support to au-
tomatically execute the model on the arduino. Com-
pare experiences with respect to time needed and ac-
cess to debugging information.

2. Communicate information via ethernet to/from a model

executing on a Simulink® Real-Time targetTM. The
information could be in the form of C/C++ data struc-
tures containing floating point numbers and text strings.
Try to use higher level communication libraries that
automatically perform data de/serialization and trans-
fer on top of UDP/TCP.

2.4 Communication

2.4.1 Skill
An architecture involving multiple microcontrollers or com-

puter systems will, sooner than later, require information
to be communicated among them. Communication meth-
ods and protocols are almost as varied as the hw+sw stacks
themselves and decisions need to be made regarding which
ones are appropriate in a given situation.

In matters of communication, a useful principle to fol-
low is: For any given set of constraints, the communication
method selected should require minimum programmer effort
for communicating the desired data. Thus, although a pro-
grammer can manually pack and unpack byte sequences into
communication buffers, it is desirable to use mechanisms
and libraries that operate at the level of data structures
or class objects. In the latter case, the sender would sim-
ply pass a class object to the communication library, which
would then be reproduced as an equivalent object in the
receiver. The programmer would not care about how the
object de/serialization takes place, which wire transfer pro-
tocol is used, etc. As objects grow more complex (for exam-
ple, if they contain nested pointers to other objects), having
a communication library handle all the intricacies becomes
more and more appealing. Unfortunately, it is a common ob-
servation that students are barely introduced to UDP/TCP
client-server programming and rarely are the higher level
communication mechanisms taught.

When programming a communications subsystem, dis-
tinction is usually made between the packaging and transfer
of data. Packaging specifies the format in which the data is
communicated. It may include the wire-level representation
of the data. Transfer, on the other hand refers to how the
packaged data is communicated across a network. For exam-
ple, a data structure may be packaged as a BSON[7] object
and transferred from a client to a UDP server. It is a valu-
able skill to know which packaging and transfer mechanisms
should be used in a given situation.

2.4.2 Solution patterns
Solutions for data packaging can be broadly classified based

on whether the resulting data package is in plain text or bi-
nary formats. Text based packaging typically utilizes struc-
tured, human readable information and is preferred wher-
ever the additional overhead of converting binary data to
ascii representation is not prohibitive. Binary packaging is
utilized where efficiency of communication has a higher pri-
ority than human readability. This is frequently the case in
embedded systems where resources are at a premium. The
obvious disadvantage of binary packaging is that making
sense of captured data packets during debugging phases is
not straightforward. It is not uncommon to utilize a text
based package format during the debugging step and transi-
tion to binary at a later point. In fact, data description lan-
guages like ASN.1 permit encoding/decoding the same data
structure into a variety of text based and binary formats.

Patterns for data transfer can be categorized by topology
and scalability characteristics. These include client-server,
push-pull, publish-subscribe, router-dealer and so on. Each
pattern dictates how data flows from the source(s) to con-
sumer(s).

Taking a long step back from the high level communica-
tion concepts discussed so far, there are times when simple



bit banging suffices (or is the only option) as the communi-
cation method.

2.4.3 Technological solutions
There exist a plethora of solutions for data packaging.

These take the form of open (or closed) specifications and li-
brary implementations that perform the actual (un)packaging
of data. Commonly used text based examples are XML,
JSON[16], and ASN.1[1] with XER[47] encoding. Common
binary packaging solutions include BSON[7], XDR[45] and
Google protocol buffers[24].

Libraries like Boost serialization[6] can be used to make
class objects serialize-able to a variety of archive formats.

In addition to classical UDP/TCP client-server program-
ming, newer communication libraries and frameworks like
ZeroMQ[50] and various DDS[44] implementations provide
less painful ways to realize many different transfer methods.
In fact, based on anecdotes, one may go so far as to say
that once a hacker gains experience with a transport layer
like ZeroMQ, it is difficult to go back to traditional socket
programming.

Solutions like CORBA[11], ZeroC ICE[49] and the afore-
mentioned DDS perform both data transfer and packaging.
However, their usage is limited because they are ”heavy”
solutions requiring substantial computing resources.

2.4.4 Suggested exercises

1. Write code that converts a C data structure to a BSON
object. Next, transfer this object using a publish-
subscribe mechanism to at least two different comput-
ers, where the object’s contents should be read out.

2. Put the publisher part of the above code in a Simulink®

S-function block. Include the S-function block in a
Simulink® model and publish values of different model
variables to the two subscribers.

2.5 Data logging and visualization

2.5.1 Skill
Logging data and visualizing that data, either in realtime

or as a replay, is a crucial aspect in the development of em-
bedded systems. This can be required in the early debug-
ging stage, the calibration and evaluation stage, as well as in
the post-deployment stage. Therefore, knowing the various
mechanisms of logging information and having the ability
to recall, manipulate and visualize the information in inter-
esting ways is an essential skill for the embedded systems
hacker.

By its nature, data logging involves input/output opera-
tions. These operations are usually asynchronous and non-
deterministic on most systems and involve a lot of ”under the
hood” activity like buffering, disk defragmentation, flushing
of memory buffers, disk controller seek times etc. As a result,
unless special realtime capable techniques are used, datalog-
ging is a non-realtime activity. This fact immediately puts
some requirements on the system architecture, the least of
which is the separation of realtime and non-realtime tasks
and having some form of communication between them.

2.5.2 Solution patterns
Given the non-realtime nature of datalogging (and even

when realtime dataloggers are present), it is a common archi-
tectural pattern to have a separate thread/task to perform

Figure 2: A publisher based logging pattern

the logging activity. The thread may write the data to disk,
display it in a convenient way, or stream it out over the net-
work. It is often better if logging happens in its own process
(so as to not disturb the realtime code timing) and even
better if the process is on an entirely different computer.

In all cases, it is of extreme convenience if the logging code
can treat the data it receives as a ”black box” i.e. if it need
not know the internal structure of the data being received.
The justification for this is two-fold. Firstly it is about lim-
iting the effect of changes. It is a nuisance to change the
logging code every time someone changes the contents of the
data structure being logged. Secondly, it is about scale. If a
hundred data structures are being logged, the logger thread
needs to know all their details to write them properly to
disk or to a network socket. However, if the data object
being logged is self-describing or has de/serialize methods,
then the datalogger can essentially call object.serialize()
for whichever object it receives (even better if all received
objects inherit from a common parent having serialize()

as an abstract method) and place the result into a send()

call and be done with it. At the receiving end, the reverse
process occurs. The logging code needs zero knowledge of
the object it is logging, apart from the fact that it can be
serialize()d and deserialize()d.

For most embedded systems, the data to be logged can
be categorized as time-triggered and event-triggered. Time-
triggered data is usually generated periodically and its con-
tents and size are known in advance. Examples of this are
sensor readings, actuator inputs etc. Event-triggered data
typically arises in a non-deterministic way, depending on the
event which triggers it. Exceptions and error handling code
can often generate such data. The qualitative difference be-
tween event-triggered data and time-triggered data is that
in the former case, the contents and their size may not be
known in advance. For example, if the code triggers a seg-
mentation fault and this is caught by an exception handler,
the resulting error message string may be accompanied by
the unwound stack frames at that point. The size of this
information is not always predictable.

Given the existence of publish-subscribe transfer patterns,
a common data logging pattern is as shown in Figure 2.
Basically, all the data to be logged in a system is collected by
a publisher task and streamed out. Downstream, there may
be any number of subscribers on any number of computers
that may receive, filter and operate on the received data.

Yet another pattern is shown in Figure 3. This pattern ba-
sically ”abuses” the metaphor of a standalone database and
client libraries to access it. Essentially, the logging task links
against a client library of an object database and dumps the



Figure 3: A database based logging pattern

received objects into the database, which may or may not
be on another computer.

A third pattern is to utilize an ”in-memory” database in
the embedded application and utilize the database’s replica-
tion facilities to synchronously replicate the database on a
different computer. If the performance and application tim-
ing characteristics permit this scheme to work, datalogging
essentially comes ”for free”.

2.5.3 Technological solutions
As an application grows, it usually requires a proper log-

ging framework supporting log levels, various logging back-
ends, thread safety and more. Getting this right is harder
than it first seems, so it is recommended to use a generic
logging framework like Boost.log[5].

The format of the logged data depends on storage size re-
quirements, efficiency and quite often on the tool that will be
used to examine and work with the logged information. Tra-
ditionally, timeseries data may be logged in the comma sep-
arated value a.k.a csv format, but options like netCDF[31],
HDF5[25] exist as well, which are especially suited for stor-
ing and selectively accessing high volume data.

Tools like Matlab® and qtiplot[36] are useful to analyze,
plot and replay logged data. Depending on task and pro-
grammer skills, one of the most useful tools to work with
logged data is simply the Python programming language, to-
gether with the numpy[32] package for scientific computing
and matplotlib[29] for plotting. In the open source commu-
nity, the tools GNU Octave and gnuplot[23] are very popu-
lar. These tools allow for the creation of custom scripts that
can manipulate logged data in desired ways.

Logging to databases is accomplished more easily with
the so called ’nosql’ databases, These databases directly
store ’documents’ which encapsulate and encode structured
data, or key/value pairs. In contrast with sql databases,
the overhead of converting/querying an object’s contents to
a relational database schema are avoided. MongoDB[30] is
a popular document database, while BerkeleyDB[4] works
with key-value pairs. If sql is needed, sqlite[42] provides a
lightweight, self-contained, embeddable, transactional database.
Both sqlite and berkeleydb can be used as ”in-memory”databases,
if that is what the application demands.

Vendors of commercial tools may offer their own logging
infrastructure tuned to work with their tools. For example
the OpenSplice DDS[33] implementation provides a connec-
tor which captures desired data from the publish/subscribe
bus and saves it to an enterprise database.

2.5.4 Suggested exercises

1. Revisit exercise 2 from section 2.4.4. Write subscribers
that dump the received Simulink® values of model
variables to mongoDB and live-plot specific variables
as a ticker plot across the screen.

2. Write a Python program to query the database from
the above exercise and plot user defined variables to
the screen.

2.6 Build systems

2.6.1 Skill
The build system has the task of compiling the software

sources into executable binaries for the target platform. As
the application becomes more complex, so does the build
system. It is not uncommon to find that the build sys-
tem needs to generate intermediate binaries along the way,
which pre-process part of the source code, or call scripts that
autogenerate some code prior to building the whole set of
sources. Some build systems need to utilize different com-
pilation and optimization options depending on whether a
debug or release deployment is made. Yet others may have
the requirement of compiling the same set of sources for dif-
ferent hardware platforms and operating systems. Looking
at the build systems of complex software like the Linux ker-
nel or some middleware like OROCOS[34] corresponds to an
education in itself.

The embedded system hacker needs to go beyond the sim-
ple ”Projects & Workspaces” generated by Integrated Devel-
opment Environments (IDEs) like Eclipse[15] and gain the
capability to create build systems that can take care of com-
plex software dependencies, order of compilation, autodetec-
tion of installed libraries and headers and using their correct
versions, prompting the user for missing supporting software
and using platform specific compilation toolchains.

2.6.2 Solution patterns
The simplest build system is that autogenerated by the

IDE in use. Most mature IDEs autodetect the compiler in-
stalled on the system, probe standard filesystem locations
for installed libraries and compile the files added to the
”Project”. Such simple systems quickly start showing their
limitations, in addition to the more serious offense of breed-
ing generations of student programmers who have no clue
how the build system works behind the scenes.

Where IDEs are not used (and sometimes even where they
are), the most common pattern is to define a special file that
contains a series of build instructions. These instructions de-
fine the source files and rules to generate the final executable
and intermediate object files. It is possible to define com-
piler and linker flags, additional arguments and dependen-
cies between the source files. This file is then processed by
a special tool which then builds the whole application. The
venerable UNIX Makefile is the most prominent example of
this category.

More flexible build patterns go beyond Makefiles. This
approach contains macros and scripts to automatically con-
figure software source packages. The build system can easily
adapt to a variety of software already available on the host
system. It can package the executables into deployment-
ready formats (installers etc.) as well as run unit-tests and



make other basic checks. Along the way, Makefiles are usu-
ally autogenerated as one step in building the software.

Very large and complex applications may require custom
wrapper scripts around all the previously mentioned pat-
terns, which may include additional and more user-friendly
functionality like downloading missing software dependen-
cies.

Finally, a recent trend in building software is Continuous
Integration[10], which utilizes build servers, to automatically
run unit tests periodically or even after every commit and
report the results to the developers via email, automatically
generated web pages and even in the form of Internet Relay
Chat ”bots”.

2.6.3 Technological solutions
Almost all development approaches involve using the ’make’

utility in some form or the other, somewhere in the build pro-
cess. On Linux GNU make[22] is the default utility, but spe-
cific libraries may have their own make tools with additional
capabilities. An example is qmake[35] that is the preferred
tool when building software utilizing the Qt libraries.

Somewhat similar to qmake, but with greater capabili-
ties, is a suite of utilities collectively called the GNU build
system[21], whose most important components are Auto-
conf, Automake and Libtool. Although very capable, the
GNU build system can be rather complex and difficult to
use.

CMake[8] is a more recent build tool which is a cross-
platform and works on Linux, Windows, Mac OSX and
many other UNIXes. Among other things it offers a vari-
ety of ”frontends” for better managing the build process and
some of these frontends are also graphical.

One of the most popular Continuous Integration tools is
the open source Jenkins[26], which is used by several large
open source projects and commercial companies.

2.6.4 Suggested exercises

1. Use CMake to create a build system for your project.

2. Explore how the build system for the open source mid-
dleware, OROCOS[34], works.

3. DISCUSSION AND CONCLUSIONS
It must be emphasized that many of the skills mentioned

here are indeed introduced in various courses in embedded
systems education. However, their theoretical depth is not
always balanced with practical depth. One reason for this
could be that laboratory exercises have traditionally aimed
at reinforcing the theoretical concepts, rather than providing
the breadth and depth needed to build systems in practice.
Thus, a lab session is less likely to ask students to bootstrap
a platform, and more likely to provide a carefully prepared
platform, environment and skeleton code using which the
students can see how the theory is reflected in practice.

Two main findings from both [17] and the WESE work-
shop where this paper was initially presented, were that 1:
There is a shortage of education platforms and 2: There is
a need for an increased university and industrial collabo-
ration. Lab platforms and ecosystems in universities often
lag behind the state of the art, because universities lack re-
sources to develop and and maintain top notch platforms,
nor do they collaborate with other universities to reduce and

distribute the required effort. However, we believe that in-
creasing cooperation between universities and the industry,
holds a potential to simultaneously address the problem of
platform familiarity, especially when industrial grade equip-
ment and software is used during the collaboration.

Corresponding challenges for educators are to keep track
of evolving technology, find a suitable balance in incorporat-
ing new technology in the syllabi, increase practical depth
and make the graduating students useful to industry ”straight
off the bat”. The last two challenges have been tackled with
good success by the CDIO approach[43] and by problem-
based and project-organized courses in embedded systems[51].
Such courses, when conducted in cooperation with the in-
dustry, are showing good promise[54] in achieving the goal
of equipping students with practical skills that are imme-
diately useful for both industry and research. Indeed, the
final courses in mechatronics education at KTH in Stock-
holm are now almost exclusively project courses, with the
projects provided by the Swedish industry. In the context of
such a project course, a student acquires the skills mostly by
self-study. In an attempt to inculcate some of the skills in a
more traditional format, a precursor course in embedded sys-
tems at KTH (MF2044) was modified to include execution
of domain specific models in one of the lab sessions. The stu-
dents were tasked to control the speed of a DC motor, first
by manual coding based on a Simulink model, then by direct
execution of a Simulink model on an Arduino platform. A
comparison of the two approaches enabled the students to
appreciate the flexibility of the former, with the ease of the
latter, and methods of combining the two approaches using,
for example, Simulink’s S-functions. It was later observed
that a majority of the students exhibited good judgment in
applying these skills during the subsequent project course.

In summary, we have preliminary evidence to believe that
a combination of project and traditional courses can incul-
cate the described skills in the context of university educa-
tion. Given the spread of the presented skill set, and the
depth and variation in technologies involved, it remains a
challenge to find an optimal pattern for imparting such edu-
cation. In balancing between theory and practice, educators
need to stimulate potential hackers to become technical lead-
ers and architects. The skills presented in this paper provide
guidance for course developers. Pursuing such efforts require
exploiting best educational practices and establishing forms
for closer industry collaboration.
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