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Chapter 1

Introduction

A SCARA robot is a 4 DOF horizontal-jointed robot. SCARA stands for Selective

Compliance Assembly Robotic Arm. These robots are generally used for vertical as-

sembly and other operations in parallel planes. Selective compliance is a characteristic

feature which is extremely useful in assembly operations requiring insertion of objects

into holes (e.g. pegs or screws). The SCARA is extremely stiff in the vertical direction

but has some lateral “give” (i.e. compliance), thereby facilitating the insertion process.

Commercial SCARA robots include the Adept One robot, the IBM 7545 robot, the

Intelledex 440 robot and the Rhino SCARA robot.

This report presents detail of the design and implementation of a SCARA robot

which we have built as our final year project. However, before plunging into the tech-

nical detail, it will be worth the while to examine some preliminary issues.

1.1 Our design objectives

The goal of our project was to develop an industrial strength SCARA with an optimum

balance of economy and performance. Robotics as an application oriented technology

has yet to make major inroads in India. We believe that with the availability of low

cost, flexible automation this scenario is bound to change for the better.

Although performance is critical, we have, at times assigned a greater priority to the

economic constraints. This is consistent with our belief that once the control theory is

fully developed, performance varies directly with the quality of hardware components

used. Thus, we have concentrated on developing the control aspects of the robot to

the maximum extent. This approach, while agreeing excellently with our monetary

limits, has resulted in an eminently usable SCARA robot with a highly modular design.

To give an immediate example, we have used stepping motors in the joint actuators,
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although the software deals equally well with servo, brush-less DC or even other 3

phase motors with assorted electronics.

All the controls have been implemented using a standard personal computer. A

desktop PC is an incredibly powerful (and an incredibly under-utilized) machine and

a significant design goal was to take full advantage of this preexisting power. The

parallel port interface would be exclusively utilized.

Another issue was standardization. We have exclusively used free1 software for

this project and we conform to the relevant open standards as closely as possible. Con-

tinuing in the same vein, we did not intend to write a new programming language

for our robot. The EIA-RS274D commonly known as G-codes (or Gerber codes) are

already an established standard in the CNC machine tool industry. Naturally, an im-

portant design goal was to ensure that the robot could be programmed using G-codes.

This implies continuous path control.

Finally, the SCARA configuration, although ideally suited for assembly tasks, need

not be limited to it. Our robot should work with a variety of end effectors and be able

to carry out many other tasks within its configuration limits.

1.2 What this report is

This report details the complete design and implementation of our SCARA robot. We

present everything from the design considerations to the hardware used, the choices we

had to make along the way, the problems we faced and how we overcame them. Rel-

evant figures, full-length diagrams, algorithms and mathematics have been included

wherever necessary. This report should act as a complete reference and guide to un-

derstanding the constructional and functional aspects of our robot.

1.3 What this report is not

This report is not a general purpose reference on robotics. We have not attempted to

explain every single detail here, nor are basic concepts covered. We (justly) assume

that the reader is already familiar with fundamentals of robotics. Hence, only those

aspects that are pertinent to our robot are dealt with. We would direct the new and

eager reader to references[1, 2, 3, 4] since they cover the basic theory far better than

we can hope to.

1When we say “free”, we are referring to freedom, not price.
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Chapter 2

Design Considerations

In this section, we present some of the preliminary thought that went ahead of the

actual design.

2.1 Performance requirements of an industrial robot

Robots are designed to be highly accurate, precise and flexible machines. Robots in

general and SCARA robots in particular, are used as replacements for human opera-

tors. This can be for a variety of reasons, but an important feature of using robots is

that they almost always do the job better than a human operator. In order to achieve

this important goal, the robot needs to conform to certain minimum standards of per-

formance. To give an idea, some of the specifications of the Adept One XL SCARA

robot are described below. This particular robot was chosen because it enjoys wide

commercial success.

Reach 800mm

Joint Range

� Joint 1:
�������	�

� Joint 2:
����
	� �

� Joint 3: 203mm

� Joint 4:
��	��� �

Maximum Joint Speed

� Joint 1: � ��� � / sec
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� Joint 2: � ��� � / sec

� Joint 3: 1,200mm / sec

� Joint 4: ��� �	� � / sec

Repeatability

� (x,y):
� ��� � �	�

mm

� (z):
� ��� � ��� mm

� Theta:
� ��� �	���

Maximum Payload 12 kg.

The reader will now be able to better appreciate the following sections.

2.2 Mechanical hardware

The SCARA is a standard configuration among robots. Furthermore we did not design

the robot strictly for a specific application. Hence at the preliminary phase, we only

had the following points in mind:

� The robot should be as light and rigid as possible, within our economic con-

straints.

� Load capacity of 3 kg.

� A reach of 0.5 m.

� A control resolution of 0.5 mm.

� Maximum tip velocity of .

� Maximum tip acceleration of .

Also, we intend the robot to be used for more than just assembly tasks. This necessi-

tates analog control of the prismatic axis. Hence, against the industrial norm of using

pneumatic actuators, we opted for a ball-screw as the joint actuator.
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2.3 Electronics hardware

The electronics involved depends totally on the type of motors being used. In order to

cut costs, we decided to use stepper motors in the joint actuators.

The major part of the electronics hardware therefore involves the design of the

appropriate stepper motor control circuits. Apart from the control software used, this

is the single most important factor, which can drastically affect the performance of the

robot. Here, we concentrate exclusively on the stepper motor drivers.

Some of the initial choices faced were

� The type of motor: Unipolar or Bipolar.

� The drive principle: L/R or PWM

� The mode of operation: Half-step or Full-step.

� Torque – speed characteristics.

Further details are given in the subsequent subsections.

2.3.1 Unipolar or Bipolar

A stepper motor moves one step when the direction of current flow in the field coil(s)

changes, reversing the magnetic field in the stator poles. The difference between unipo-

lar and bipolar motors lies in the way in which this reversal is achieved.

A bipolar motor has one field coil and two change over switches that are switched

in the opposite direction. A unipolar motor has two separate field coils and a single

change over switch. See fig. 2.1

The advantage of the bipolar circuit is that there is only one winding, with a good

bulk factor (low winding resistance). The main disadvantages are the two changeover

switches because in this case more semiconductors are needed.

Unipolar circuits need only one changeover switch. The enormous disadvantage,

however, is that a double bifilar winding is required. This means that at a specific bulk

factor the wire is thinner and the resistance is much higher.

Although the bipolar circuit is more complicated, we opted for it due to two over-

riding reasons

1. The bipolar circuit can drive both, bipolar as well as unipolar motors.

2. The bipolar circuit delivers more torque.
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Figure 2.1: Bipolar and Unipolar configurations

The second point needs further explanation. The torque of a stepper motor is propor-

tional to the magnetic field intensity of the stator windings. It may be increased only

by adding more windings or by increasing the current.

A natural limit against any current increase is the danger of saturating the iron core.

Much more important is the maximum temperature rise of the motor, due to the power

loss in the stator windings. This is another advantage of the bipolar circuit, which,

compared to the unipolar systems, has only half of the copper resistance because of

the double cross-section of the wire. The winding current may be increased by a factor

of
� �

and this produces a directly proportional effect on the torque. At their power

loss limit, bipolar motors thus deliver about 40% more torque (fig. 2.2 ) than unipolar

motors built on the same frame.

2.3.2 L/R or PWM

The speed of a stepper motor depends on the rate at which the coils are turned on and

off, and is termed as the “step rate”. The maximum step-rate and hence the maximum

speed depends on the inductance of the stator coils. Fig. 2.3 shows the equivalent

circuit of a stator winding and the relation between current rise time and winding in-

ductance. With higher inductance, it takes longer time for the rated current to build up

10



Figure 2.2: Torque in bipolar and unipolar systems

in a winding.

If the time between two step commands is lower than the current build up time,

then the motor misses a step. Thus, motor current may never reach full-rated value,

especially at high speeds, unless the voltage (Vs) across the terminals is high. In the

simplest L/R drive (fig. 2.4), a transistor sequentially activates the windings to drive

the motor. This type of drive performs poorly because the supply voltage must be low

so that the steady state current is not excessive. As a result, the average winding current

— and hence the torque — is very low at high motor drive speed. These problems can

be overcome by introducing a series resistance, thereby increasing the overall value by

a factor of four — giving an L/4R ratio — and also by increasing the supply voltage

(fig. 2.4). Although this approach improves torque at high step rates, it is inefficient,

because the series resistance constitutes a substantial waste of power. Thus, the L/R

method, although conceptually simple, is not an elegant technique. It was thus rejected

in favor of the PWM technique.

A constant current pulse-width-modulation (PWM) is an elegant solution to im-

prove the motor’s efficiency and torque speed characteristics. This method comprises

of introducing a feedback loop to control the winding current. Now, linear constant

current control is possible, but is rarely used because of high losses in the power stage.
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Figure 2.3: Current buildup in a motor winding

Figure 2.4: L/R drive

However, with the PWM scheme — a chopper circuit — not only is the L/R time con-

stant problem solved, but power dissipation is reduced too. The conceptual diagram of

a PWM circuit is shown in fig. 2.5.

2.3.3 Half-step or Full-step

Half-stepping is a technique by which finer positioning can be obtained from a motor.

Consider fig. 2.6. When current flows in only one winding, the rotor aligns with the

stator poles in positions 0,1,2 and 3. When current flows in both windings, the rotor

aligns itself between two stator poles in positions �� ,
�

�� ,
�

�� and � �� . Thus, compared to

full step, the number of steps are doubled.

An essential advantage of a stepper motor operating at half-step conditions is that

its position resolution is increased by a factor of two. From a 1.8 degree motor, we

obtain 0.9 degrees, which means 400 steps per revolution.

This is not the only reason the prefer half-step mode. It is often essential to avoid

resonance in the motor. The rotor of the motor and the changing magnetic field of

the stator form an equivalent spring-mass system, which may be stimulated to vibrate.

During resonance, the motor torque drops to zero and the motor may lose position
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Figure 2.5: PWM control

Figure 2.6: Half-step mode
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Figure 2.7: Resonance

completely. In practice, the load might deaden this system, but only if there is sufficient

frictional force. Half-step mode has decreased chances of resonance, due to the fact

that the rotation is only half as long resulting in less stimulation. Fig. 2.7 shows the

response curves in half- and full-step modes.

However, the half-step mode has two major disadvantages.

� Twice as many clock pulses are needed, as compared to a full-step system.

� In the half-step position, the motor has only about half the torque of the full-step.

Despite these disadvantages, the half-step mode was chosen, for the sake of better

positional accuracy. The justification is that modern computers are fast enough to

generate high frequency clock pulses. Also, with proper mechanical gearing, the lost

torque can be recovered. Of course, higher operating speeds will be needed, which is

actually a help because at high speeds, the loss of torque decreases due to averaging

effects.

2.3.4 Torque – Speed characteristics

An important point to be realized when working with steppers is that the torque is a

function of speed, and as a general rule, the torque decreases as the speed increases.
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Figure 2.8: Torque – Speed characteristics

Fig. 2.8 shows the torque-speed relation for a typical stepper motor.

“Pull-in” torque is the maximum load torque at which the motor can start or stop

without mis-stepping. “Pull-out” torque is the torque available when the motor is con-

tinuously accelerated to the operating speed. Max. start rate is the step rate at which

the motor can start instantaneously at no load, without mis-stepping.

2.4 Software and control

2.4.1 The need for “real time”

A system is said to be real time when the correctness of its output depends not only on

its logical result, but also on the time at which the result is obtained. Thus, a real time

operating system is a system which, apart from executing programs, must also see to

it that those programs are executed at and within a specified time frame.

Consider that you are running a motor connected to your computer, through a pro-

gram which generates a steady stream of pulses. Now, if you start another program

on the same computer, you will observe that the motor no longer runs smoothly. The

motor might even stop running. Why does this happen?

The answer has to do with the way in which the operating system runs programs.

15



When the operating system is multitasking, it runs each program for a small period of

time. This is called a time slice. Whenever a program exceeds its time slice, it is put

to sleep and another program is run in its place. Now, if the program which is put to

sleep is the one which drives the motor, how will the motor run?

This is just one example of a number of problems that can occur when a program is

running. As another example, consider what happens when a program needs to perform

an action at time T. The program goes to sleep after telling the operating system to wake

it up at the required time. Now if, at time T, another program is executing a system

call, or a higher priority process is being executed, our program will not be woken up.

If the program controls a machine, that machine might have gone out of control by the

time the program is woken up and executed.

Thus, we see that a normal operating system, which is optimized to give good

average performance is not at all useful to control real-time tasks.

2.4.2 Choosing a real time OS

The only solution to the above problem is to use a real time OS, which guarantees the

timing of the processes under its control. Examples of real time operating systems are

QNX, RTAI/Linux, RTLinux, VxWorks etc. The last one is a commercial OS which

requires two computers to achieve real time capabilities. These factors naturally put it

immediately out of consideration. RTAI and RTLinux are real time extensions to the

Linux kernel. When patched against the kernel, they ensure real time performance.

A similar real time patch for the Microsoft(R) Windows NT(TM) is available from

Radisys Inc. However, both products are

1. Commercial

2. Closed Source

3. Costly

Point 2 is of exceptional importance. The closed nature of these products meant that

we would be unable to change the system behavior to our liking, nor would we be able

to improve it in order to extract better performance. Apart from this, moral, ethical[5]

and licensing issues ruled out the possibility of using any proprietary operating system

and software.

We are strong supporters of GNU[6] and “Free software”[7]. We also have exten-

sive experience in running and programming GNU/Linux systems in general and the

linux[8] kernel in particular. All these factors were decisive in selecting GNU/Linux
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as the operating system of choice for the project. Since the RTAI and RTLinux API

matches closely, it was decided to include support for both the real time extensions.

Doing this is not as difficult as it sounds, due to the close adherence to standards by

both.

2.4.3 Control

Not much is to be said about the control system at this point. The only consideration

was that we should be able to achieve

1. Continuous paths in space.

2. Joint-interpolated motion.

3. Circular interpolation.

4. Linear interpolation.

5. Coordinated linear motion.

Coordinated linear motion means that all the axes start and finish their motion segments

at the same time. These requirements can largely be handled by the control software.

The control strategies are discussed in chapter 5.
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Chapter 3

Mechanical hardware design

3.1 Control resolution

For a SCARA robot, the worst case control resolution is at the periphery of the work

envelope. This occurs when both the elbow and forearm are in line with each other.

Using direct drive with stepping motors, the achievable resolution is found out as fol-

lows.

A stepper motor operating in half-step mode is capable of 400 steps per revolution.

Hence, it divides the periphery of the work envelope into 400 equal steps. For an elbow

length of 0.3m and a forearm of 0.25m, the control resolution, given by equation 3.1

will be 8.639mm.

����� �����
	
���

	 ���� 
 �	� (3.1)

To achieve a resolution of 0.5mm, gearing is required. This increases the number

of steps into which the periphery can be divided. The gear ratio can be calculated by

� � ��� � � ��� � � ��� � �	�
:1 The closest available standard timing belt ratio is 19.14:1 which

is achieved using 2 stage gearing. Each stage consists of a 16 teeth pulley driving a

70 teeth pulley, thus achieving a gear-ratio of 4.375:1. In order to achieve the same

resolution for the forearm, 8:1 gearing was selected. This required the length of the

elbow to be increased to 0.34m. Recalculating the control resolution with
	

�
� ��� � 


and
	 � � ��� �

, the control resolution comes out to be 0.484 mm. This value agrees

excellently with the value we set out to achieve.
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3.2 Material selection

Economy was the prime concern here. The material selected should be low in cost

(per kg basis), readily available in the desired shapes and sizes and the procurement

time and procurement cost should be low. We initially had a choice of two materials,

Aluminum and Mild Steel.

Aluminum provides the necessary rigidity at a low weight. However, using Al

meant that we would have to machine the arms from solid billets. This is because, al-

though Al sections are available, they are not easily weldable. Al billets of the required

size were not available locally and hence procurement costs were very high.

On the other hand, MS is available in a variety of cross-sections, is easily weldable

and is more rigid than aluminum. This also allows us to use hollow sections and weld

components together to build the arm structure.

Thus MS was exclusively used as the material of choice for the arms.

We chose a rolled steel ball-screw over a ground one, since it is significantly

cheaper, yet served our resolution and repeatability requirements. Case hardened and

ground shafts were used to support the ball screw against bending.

3.3 Design procedure

The design procedure is essentially iterative in nature. Rather than showing actual

calculations, we prefer to elaborate on the design process. This results in a significant

loss of clutter in the report, without compromising on clarity.

3.3.1 Design of prismatic axis

We initially started off with a tip load assumption of 3 kg. We had to ensure that the

entire assembly was rigid enough to support this load. By “rigid enough”, we mean

that the assembly should bear this load and still maintain the control resolution.

The ball-screw design involved initially considering the axial tensile stresses. Af-

ter this value was obtained, torque required to lift the load was calculated as per the

equation

� ���
�������
	 ��� �

  (3.2)

where,

T = torque require to lift load W

W = tip load
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Self Weight

L/2 L/2

     
Tip load + weight of
prismatic axis

Figure 3.1: Load on the forearm

d = pitch diameter of ball-screw
�

= helix angle � ���
	�� � �
� = coefficient of friction between screw and nut

Once the torque is obtained, then the screw is checked for combined torque and

axial load using maximum normal stress theory. After considering the results of this

procedure and market availability, we decided on a 14mm pitch diameter ball-screw.

Since the ball-screw is designed to take only the axial load and torque, all bending

moments need to be countered by separate elements. We used two 12 mm diameter,

case hardened and ground shafts in parallel with the ball screw to achieve this aim.

These shafts move along with the ball screw and are supported using linear bearings.

3.3.2 Design of forearm

The forearm needs to be rigid enough to resist the bending moment in the vertical plane

generated by the combined weight of the prismatic axis and the tip load, as well as the

self-weight of the forearm. This is shown schematically in fig. 3.1

Using bending equation 3.3, we calculated the minimum MI required about the

bending axis.

�

�
���
� (3.3)
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Tip load + weight of
prismatic axis

L1 L2

W1per m. W2 per m.

Figure 3.2: Load on elbow

where M is the bending moment generated by the combined load on the forearm,

as shown in fig. 3.1. Once the MI was known, a 40x40 mm MS square hollow section

of 3 mm thickness was selected for the forearm. The actual deflection of the forearm

was then calculated using equation 3.4

� ��� 	��
��� � �

� 	��
��� � (3.4)

where ,�
= deflection of forearm tip

w = self-weight of forearm/meter

W = load at tip of forearm

The actual deflection came out to be less than 0.01mm i.e far below the control

resolution of the prismatic axis.

3.3.3 Design on elbow

The design of the elbow follows that of the forearm. The only addition is the of self-

weight of the elbow and the increase in length. Equation 3.3 remains the same, while

equation 3.4 is modified to

� ��� �
	 �

���� � �
�
� �
	

� �
	 �� �

��� � �
�
� � 	 � � 	

���
	�


� 
��� � �

(3.5)
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Figure 3.3: Load on column

where

� � = self weight per meter of elbow

� � = self weight per meter of forearm

A 75 mm channel section was used for the elbow arm. The actual deflection was

found to be less than the control resolution.

3.3.4 Design of vertical column

Fig. 3.3 shows the loading on the vertical column. Its design essentially comprises of

applying equation 3.3.

In this case,

� � � �
	
� �

	 �  � � �

	
�� � � � �
	

���
	 �
�  (3.6)

We selected a hollow MS pipe of external diameter 60 mm and wall thickness 4 mm.
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3.3.5 Design of shafts

The various shafts were designed to sustain the torsional stresses. The equation used

was

� � ���� (3.7)

3.4 Selection of motors

The torques required to drive the elbow and forearm for a SCARA robot are given by

� �
� � ��� �� � � � � � � �� �

� �
� � � �
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� � � � �

��� �

� � � � �� �
��	�
� �

�� � � � �
� � � � �� �

� � � � �
� � �

� � � � �� �
��	 
� � �

� ��� �
� 
�
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�
� ��� � � � � � �

� � �  
�� � 
�� � ��� �
� � � �  
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��	 (3.8)
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� � �

� � � � �� �
� ��� � 
� �

� ��� � � 
���  (3.9)

The terms involving 
 � � are inertia forces while those involving 
 �
�

 �� are the Coriolis

force components. Those involving 
 � �
are the centrifugal velocity coupling. The term

� � 
 �  is to account for the joint friction. Since we used anti-friction bearings, this term

has been ignored. In the above equations,� � = mass of elbow� � = mass of forearm� � = effective mass on forearm tip�
� = length of elbow� � = length of forearm� ����� � = ����� � � �  and �"! 	 �#� �  respectively
 �

�
� 
$� = angular velocities of the elbow and forearm respectively
 � �

�
� 
 � �� = angular accelerations of the elbow and forearm respectively

Using these equations, 13 kg-cm motors for were found to be suitable for both the

elbow as well as joint axes.
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Chapter 4

Electronics hardware design

Preliminary thoughts on design have been covered in section2.3. We will now concen-

trate our attention on the actual electronics used in the robot.

From chapter 3 we know that the maximum torque requirement is 13 kg-cm. We

had a means of easily procuring stepper motors manufactured by Sanyo Denki, and so

after looking up the relevant catalog, the following models were selected:

103H7126-5040: This is a 13 kg-cm 2 phase, bipolar motor with 1.8 degrees/step and

2A current rating.

103H548-0440: This is a 2.7 kg-cm unipolar motor with 1.8 degrees/step and 1.2A

current rating.

It was decided to build a circuit capable of driving either of these motors. Four proto-

types were built, one for each motor.

4.1 The power driver

Most control circuits are low power devices, which generally operate within a range

of 0 to +5 Volt and a current rating of a few milli-ampere. The motor, on the other

hand, is a high power device requiring 2 Ampere current. Thus, the control circuits

are clearly incapable of driving a motor directly. What is needed is a power stage that

can accept low power input and provide sufficient output to drive the motor. There are

standard circuits to drive motors, and considering our requirements, we opted for the

L298 driver from SGS-THOMSON.

The L298 is a high current, dual full-bridge driver designed to accept standard TTL

logic levels and drive inductive loads like relays, solenoids, DC and stepping motors.

The internal block diagram of the IC is shown in fig. 4.1
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Figure 4.1: Internal block diagram of the L298

Two enable inputs are provided to enable or disable the device independently of in-

put signals. The emitters of the lower transistors of each bridge are connected together

and the corresponding external terminal can be used for the connection of an external

sensing resistor. An additional supply input is provided so that the logic works at a

lower voltage. The main characteristics of the L298 are

� Operating supply voltage up to 46V.

� Total DC current up to 4 A.

� Low saturation voltage.

� Over-temperature protection.

� Logical ’0’ input voltage up to 1.5V (High noise immunity).

The L298 integrates two power output stages. An output stage is a bridge configuration

that can drive an inductive load in common or differential mode, depending on the state

of the inputs. The current that flows through the load comes out from the bridge at the

sense output: an external resistor here will allow to detect the intensity of this current.

Each bridge is driven by means of four gates, the inputs of which are In1, IN2, EnA

and In3, In4 and EnB. The In input sets the bridge state when the En input is high. A

low state of the En input inhibits the bridge. All inputs are TTL compatible.
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Figure 4.2: Half-step sequence.

It should be noted that an external bridge of diodes is required when the inputs

of the IC are chopped. Fast Schottky diodes from the FR series are preferred. These

diodes are shown on the output side in fig. 4.6 and fig. 4.7.

4.2 The phase translator

A stepper motor needs a specific sequence of pulses in its windings in order to rotate.

For half-step mode, the currents in each winding at a given step number and rotation

fraction, is given in fig. 4.2

There are two options to generate this phase sequence.

1. Sequence generation through the computer itself.

2. Using a separate sequence generation chip.

Since the sequence is nothing but a combination of 1’s and 0’s, it can be very well gen-

erated from the computer itself. However, there is a major limitation to this technique

when driving a large number of motors. Specifically, 4 output lines per motor are nec-

essary. The standard parallel port of a computer has only output lines. Although the

4 control lines can be used for output, it still amounts to a total of 12 lines. This im-

plies that simultaneous operation of only three motors is possible. Since the SCARA

requires coordinated linear motion of 4 axes, this mode of sequence generation falls

short of the requirement.

A better approach is through the use of a phase translator chip. These IC’s contain

internal translators that generate the stepping sequence from a minimum input of clock

and direction. Thus it is possible to drive 4 motors simultaneously from the parallel

port. These IC’s also sport other attractive features like enable/disable inputs, half/full

step sequence generation, reset and sync possibilities etc. For our project, we used the

L297 stepper motor controller chip from SGS-THOMSON.

The L297 IC is specifically designed for use with the L298 and thus integrates well

with the rest of our setup. It receives control signals from an external source (in our
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Figure 4.3: Internal block diagram of the L297

case, this source is the computer) and provides all the necessary drive signals for the

power stage. Additionally, it includes two PWM chopper circuits to regulate the flow

in the current windings. It also handles normal, wave drive and half-step drive modes.

Other advantages are

� Very few components are required. So assembly costs are low, reliability is high

and little space is required.

� Software development is considerably simplified.

� Computational burden on the computer is significantly reduced.

� The L297 can be used with any power stage, including discrete power devices.

An internal block diagram of the L297 is shown in fig. 4.3

The 8 step master sequence of the translator, corresponding to half-step mode is

shown in fig. 4.4. Clockwise rotation is indicated.
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Figure 4.4: Half-step sequence

Figure 4.5: Output of the L297

4.3 How everything hangs together

In this section, we show how both the stages discussed above are tied together to give

the required result. Fig. 4.5 shows the output waveforms of the L297 corresponding to

half-step mode. The chopper action is not indicated, in order to keep things simple.

Fig. 4.6 gives a clear idea of the working of the circuit at the block diagram level.

The actual circuit is indicated in fig. 4.7

Finally, the voltage waveforms for half-step controls in the individual windings are

shown in fig. 4.8.

The aim of this section was to shed light on the circuits required to drive the stepper

motors. The reader should note that assorted circuitry for noise filtering and isolation
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Figure 4.6: Block diagram of the entire circuit

Figure 4.7: The actual circuit
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Figure 4.8: Winding voltage waveforms

at various points is also required. These circuits are banal and trivial and will not be

discussed here. They can be found in any good book on basic electronics. However,

for the sake of completeness, the implemented power and drive circuit diagrams are

included as inserts in this report.
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Chapter 5

Control

5.1 The link coordinate diagram

Before any control theory can be developed, a consistent and systematic representa-

tion of the robot has to be developed. This involves assigning coordinate frames to

the manipulator and assigning the Denavit-Hartenberg link parameters. Applying the

Denavit-Hartenberg algorithm to the link chain results in the link coordinate diagram

shown in fig. 5.1

The kinematic parameters of the robot are summarized in table 5.1.

5.2 The arm matrix

Next, we calculate the arm matrix for the robot.

��� � ��������
	 � �
��
� �

�
� �� ��� (5.1)

where,

������� � � � � ��� ���
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 � � � � � � �

Table 5.1: Kinematic parameters
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Figure 5.1: The link coordinate diagram
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After multiplication and simplification using trigonometric identities, we get the

following arm matrix
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Here, the notation
�

� �
�
�
� denotes ����� � 
 �

� 
 � � 
 � �� and similarly, �
� �

�
�
� denotes��! 	 � 
 �

� 
 � � 
 �  . Note that the approach vector is fixed at � � � � � � , independent of

the joint variables. This is a characteristic of SCARA robots, since they are designed

to manipulate objects from directly above.

5.3 Forward kinematics

The forward kinematics problem involves the mapping of a vector from joint space to

tool-configuration space. Thus, when a joint vector is known, using forward kinematics

equations, it is possible to calculate the world coordinates of the tool1 tip. In our

software, forward kinematics is used for purposes like jogging the individual axes in

joint mode.

In order to derive the forward kinematics equations, we make use of two properties

of the arm matrix.

1. The columns of the arm matrix give the coordinates of the tool frame in terms of

the base frame.

2. For a give 4x4 homogeneous arm matrix, the matrix comprising
��� � � , � ����� �

denotes the tool orientation matrix, while the matrix comprising
��� � � , � � 


and
� � � � � denotes the position vector of the wrist.

Thus, from equation 5.2 we can conclude that for a given joint vector
� �#�

�
� � ��� � � � � � 

the following equations hold true.

1By tool we mean any end effector attached to the robot’s wrist.
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� (5.4)

� � � �
� � � (5.5)

Note that the equation for
�

is slightly modified. Specifically, we do not consider

the length � � because we intend to program the robot using G-codes. Naturally, � � will

be specified as the tool length offset.

Note that if the sign conventions are set such that all counter-clockwise rotations are

positive, then
�

��� � and �
��� � will have to be used in equations 5.3 and 5.4 respectively,

instead of
�

� �
� and �

� �
� .

The magnitude of roll i.e
� � , remains the same.

5.4 Inverse kinematics

Inverse kinematics involves finding an inverse mapping from tool-configuration space

back to joint space. Thus, we can determine the necessary joint vector to achieve a

given tool orientation and position in space.

Inverse kinematics is also used to check that the joint limits of the robot are ob-

served. Joints 1 and 4 do not have any limits. Joint 2 is limited to angles between
� ����� �

. Joint 3, the prismatic joint, is limited to movement not exceeding its length

(0.15m). No solutions to the inverse kinematics problem are possible if any joint over-

rides its limits.

Working back wards from equation 5.2, we obtain the following general inverse

solution, once given a vector � � � � � � � � � �  in the tool-configuration space.

� � � � ��� ��� ��� � � �
�
� � � � �

�
� � ��

� �
�
� � � (5.6)

�
�
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 ��� � ��� � ���
	�
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�
� (5.7)

� � � � �
� �

(5.8)

As before, the value of roll i.e
� � , remains the same!
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Inverse kinematics equations are also used in other tasks like trajectory generation

and interpolation.

5.5 Motion planning

Motion planning deals with trajectory and path generation. The term path refers to the

locus of points in space that the tool tip traverses in a given motion cycle. Trajectory

is a more specific term and it includes the time-frame and time-scale within which the

motion cycle is completed. As mentioned in section 1.1, the robot is programmed using

the RS274NGC2 language. Motion control includes all of the following functions:

� Sampling the position of the axes to be controlled.

� Computing the next point on the trajectory.

� Interpolating between these trajectory points.

� Computing an output for the motors.

� Programmable software limits.

� Interfaces to hardware and limit switches.

� PID servo compensation with zero, first and second order feed forward.

� Maximum following error.

� Selectable velocity and acceleration values.

� Individual axis jogging (continuous, incremental and absolute).

� Queued blended moves for linear and generalized circular motion.

� Programmable forward and inverse kinematics.

Efficient motion planning makes all the difference between a crude point-to-point robot

and a highly sophisticated, contouring one. An overview of the trajectory planning

algorithm used for the robot control software is given below.

During each trajectory planning cycle, the trajectory planner computes the next

point on the path, based on the type of motion segment (line, circle, arc etc.), speed

and the acceleration/deceleration specified. The time period of the trajectory cycle is

2This is the NGC dialect of RS274. NGC stands for Next Generation Controller.
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typically 10 milli-seconds.3 After every time period, the trajectory point is run through

the inverse kinematics functions to generate the corresponding axes points. Thus, at

the end of each trajectory cycle, a new set of axes points is obtained.

There is an interpolator for each axis and each point from the new set is appended

to its associated axis interpolator. This is because the axis controller runs at a higher

frequency than the trajectory planner. The cycle time for the axis controllers is typi-

cally 1 millisecond.4 Thus, the axes controller runs 10 times faster than the trajectory

cycle. Since the trajectory planner and axis controllers all run in one piece of code,

what happens is that the whole loops runs at the fastest rate, and the trajectory calcu-

lations are done once every Nth time through the loop. All the axis calculations are

run at the rate of the fastest, instead of trying to slow some of the slower ones down by

only running them every other cycle.

The axis controller is where PID servo control is done, or the frequency genera-

tor for steppers is loaded. In every one of the non-trajectory cycles, the interpolator

generates an in-between point from the last axis point to the most recent axis point.

Many types of interpolation can be done.

Zeroth-order interpolation is one in which the same point is used over and over

again, until the next trajectory point is computed. Then the new one is used over and

over again. At the transition, there are jumps in position, speed and acceleration.

First-order interpolation is one in which the in-between points fall proportionally

between the end points. At the transition, position is continuous but there is a jump in

speed, and acceleration has large spikes.

Second-order (quadratic) interpolation is one in which the in-between points fall

on a curve between the end points. At the transition, position is continuous, and at

one side (just preceding or just following the transition), speed can be continuous.

Since there is no point in only having speed continuity half of the time, second-order

interpolation is not of practical use.

Third-order (cubic) interpolation is one in which the in-between points fall on a

curve between the end points. At the transition, position and speed are continuous, but

there is a jump in acceleration and jerk (change in acceleration per change in time) has

large spikes.

Fourth-order (quartic) interpolation is one in which the in-between points fall on

a curve between the end points. At the transition, position and speed are continuous,

and at one side (just preceding or just following the transition), acceleration can be

continuous. Since there is no point in only having acceleration continuity half of the

3This value can be changed.
4This value can be changed.
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time, fourth-order interpolation (like second-order interpolation) is not of practical use.

Neither are any other even-order interpolators.

Fifth-order (quintic) interpolation, is one in which the in-between points fall on a

curve between the end points, like the cubic. At the transition, position, speed and

acceleration are continuous. Jerk is bounded and doesn’t have spikes. This is the

smoothest from the group, but although have code for this, we haven’t implemented it

yet.

Each type of interpolation introduces a delay, and the higher the order, the longer

the delay. This is because the interpolating curve parameters need to fit more input

points, and they can’t be constructed until all the necessary points have been given to

the interpolator. For zeroth order interpolation (no interpolation), there is no delay and

it can be used once a single point is obtained. For first order, two points are needed

in order to begin interpolating. For third (cubic), four points, for fifth (quintic), six

points, etc.

Currently, cubic interpolation is being utilized in the robot control software.
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Chapter 6

Software design

We now turn to some of the software aspects of our project. We have filtered down

all principles to their lowest common denominator. Thus, this chapter should be un-

derstandable by everybody with a basic familiarity with computers. We will not be

jumping into all the gory details here. Those are already well documented within the

source code and other help files on the accompanying CD. We have no interest in

reprinting thousands of lines of code.

6.1 Programming the parallel port

A quick overview of programming the parallel port is presented in this section.

The programming interface to the parallel port consists of 3 registers. These are

the Base register, Status register and the Control register. Each register has an address

in memory. The addresses of the Status and Control registers depend on the address

of the Base register, which is simply called the base address. In a computer, the base

address is either of 0x3bc, 0x378 or 0x278.

The addresses of the other registers are calculated as follows:

��������� � � ��� ��� � � � � � � � � � � ��� � � � � � � � � � � � �

� �
	 � � ��� � ��� ��� � � � � � � � � � � ��� � � � � � � � � � � � �

The Base register is used for data output, status register is used for data input and

the control register is used for setting operating modes, interrupt enable/disable etc.

Data written to the base register appears as voltage at the output pins of the parallel

port. Voltages applied to the input pins appear as data in the status register. These

voltages correspond to the TTL standard i.e. in the ideal case, a logical HIGH (1) is
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+5V and a logical LOW(0) is 0V.

Pins 2 through 9 are data outputs, pins 10 through 13 and 15 are used for data input.

Thats about all the information we require to get started. Further information can be

found in references[9, 10, 11, 12].

6.2 Driving a stepper motor

A stepper motor requires a train of pulses in order to rotate. The rotation of the motor

is a function of the number of pulses sent and their frequency. There are various tech-

niques of producing a pulse train at the output pins of the parallel port. The algorithm

for the simplest technique is

1. Send logic 11 to the pin.

2. Wait for some time.

3. Send logic 02 to the pin.

4. Wait for some time.

5. GOTO step 1.

Unfortunately, this technique cannot be used for driving multiple motors simultane-

ously. There are other ways to accomplish this. The best3 method is discussed below.

There is a structure associated with each motor that contains actual and commanded

values of speed, position and acceleration. The control loop consists of a single fast

periodic task that drives all the motors. To move the motor move from point X to

point Y, this is what happens: The motor thinks it is at point X. It gets a message

to move to point Y. From this, it figures the direction of movement. It then uses an

accumulator algorithm for acceleration/deceleration. Each time through the task, the

speed is increased as per the equation

���
� � � � ���

� � � � ����� � � � � ��� � �
	�� � � � �
�

� � � �	��


The increment to distance in each period is smaller than the step size. Hence, a

position accumulator, accumPos, is incremented each time through the cycle, as per

the equation

���� � � � � � � ����� � � � � �
�
���
� � � � � � � �

�

� � � ����

11 means HIGH. Which means that +5V appears at the pin.
20 means LOW. Which means pin voltage drops to 0V.
3By “best”, we mean the best technique for our purpose.
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Next, the value of accumPos is compared against the motor step-size. If

����� � � � � ��� � � �
� � ��� �

then,

� ��� ��� 	 � � � � ��� ��� 	 � � � � � �
� � ��� ������ � � � � � � ���� � � � � � � � � �
� � ��� �

Naturally, both values are corrected for direction also. Thus, the motor accelerates as

long as

���
� � ��� ��� � � � ��� � � � �

When the target speed is reached, it stops accelerating and a cruises at a steady velocity.

To slow down, the motion code calculates the stopping distance given its current speed

and the constant deceleration value. It checks this as part of the main loop and sets

target speed to zero. The same cycle repeats and the motor slows down.

6.3 The Enhanced Machine Controller4

The Enhanced Machine Controller[13] is a free and open source program that can

control servo motors, stepper motors, relays and other devices related to machine tools.

We have made extensive use of the EMC, adapting it for our control purposes. The

SCARA forward and inverse kinematics were separately written and re-integrated with

the main stream code. This section gives an overview of the EMC.

There are four components to the EMC software, as shown in fig. 6.1: a motion

controller (EMCMOT), a discrete I/O controller (EMCIO), a task executor which coor-

dinates them (EMCTASK) and a collection of text-based or graphical user interfaces.

6.3.1 The motion controller EMCMOT

The motion controller is written in C for maximum portability to real-time operating

systems. Motion control includes sampling the position of the axes to be controlled,

computing the next point on the trajectory, interpolating between these trajectory points

4This section is available courtesy of John Kasunich.
http://home.att.net/~JMKasunich/EMC_Docs/EMC_Home.htm
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and computing an output to the motors. For servo systems, the output is based on a

PID compensation algorithm. For stepper systems, the calculations run open-loop, and

pulses are sent to the steppers based on whether their accumulated position is more

than a pulse away from where their commanded position should be. The motion con-

troller includes programmable software limits, interfaces to hardware limit and home

switches, PID servo compensation with zero, first, and second order feed forward,

maximum following error, selectable velocity and acceleration values, individual axis

jogging (continuous, incremental, absolute), queued blended moves for linear and gen-

eralized circular motion, and programmable forward and inverse kinematics. The mo-

tion controller is written to be fairly generic. Initialization files (with the same syntax

as Microsoft Windows INI files) are used to configure parameters such as number

and type of axes (e.g., linear or rotary), scale factors between feedback devices (e.g.,

encoder counts) and axis units (e.g., millimeters), servo gains, servo and trajectory

planning cycle times, and other system parameters.

Complex kinematics for robots can be coded in C according to a prescribed func-

tion interface and linked in to replace the default 3-axis Cartesian machine kinematics

routines. A C language application programming interface (API) between the motion

controller and the external world is provided so that specific hardware can be inte-

grated into the EMC without modifying any of the core control code. Programmers

must implement these API functions for each board.

6.3.2 Discrete I/O controller EMCIO

The discrete I/O controller (bottom right in fig. 6.1) is written in C++, using the

NIST RCS Library. It is based on a hierarchy of C++ controller classes derived from

the NML_MODULE base class, each communicating using NML5. Discrete I/O con-

trollers are highly machine-specific, and are not customizable in general using the INI

file technique used to configure the more generic motion controller.

6.3.3 Task Executor EMCTASK

The Task Executor (second from top in fig. 6.1) is coded similarly to the discrete

I/O controller, using the NML_MODULE base class and the RCS Library. It is less

machine specific than the discrete I/O controller, as it is responsible for interpreting G

and M code programs whose behavior does not vary appreciably between machines.

5NML stands for Neutral Messaging Language. It is platform independent.
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6.3.4 Graphical User Interfaces

Indicated at the very top in fig. 6.1 is the fourth component of the EMC software, the

graphical user interface (GUI). The architecture of EMC supports other components

instead of the GUI, such as flexible manufacturing systems or remote GUI’s. Whatever

component is at the top has high level control of the EMC. It communicates using

NML, sending messages such as power on, enter automatic mode, run a program, or

power down. GUI’s may send manual commands initiated by the operator, for example

jogging machine axes in manual mode or homing each axis.

The EMC comes with several types of user interfaces: an interactive command-line

program emcpanel, a character-based screen graphics program keystick, an X Win-

dows program xemc, a Java-based GUI emcgui, and a Tcl/Tk-based GUI TkEmc. A

screen shot of TkEMC is shown in fig. 6.2.

TkEmc is most well-supported, and runs on Linux and Microsoft Windows. The

Windows version can connect to a real-time EMC running on a Linux machine via a

network connection, allowing the monitoring of the machine from a remote location.

TkEmc comes with the Linux distribution of the EMC.
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Figure 6.2: TkEMC
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Chapter 7

Robot capabilities

Some of the robot’s capabilities are as follows:

1. Programmable using standard G and M codes.

2. Point-to-point control possible.

3. Continuous path control possible.

4. Remote operation of the robot is possible.

5. The GUI front-end can run on any operating system. For example, you can

connect the robot to a computer running GNU/Linux, while the GUI can run on

a separate computer running Microsoft Windows.

6. Back plotting is possible. This means, you can view the tool tip path in a separate

graphical window, as the robot goes through its motions.

7. Verification of the input programs is possible. Thus, one can ensure that the

input program is correct, before executing it on the robot.

8. Control resolution is 0.5 mm.

The work envelope of the robot is shown by the hatched region in fig. 7.1

The maximum outer radius is 590 mm, while the inner radius of the work envelope

is 176 mm.

A screen-shot of the back plot in action is shown in fig. 7.2.
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Figure 7.1: Work envelope
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Figure 7.2: The backplotter
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Chapter 8

Scope of application

Our robot can be used for a wide variety of applications. The wrist of the robot ends

in a flange assembly, to which different types of end-effectors can be clamped. Thus,

apart from vertical assembly, some of the applications that it can easily perform are

� Spot welding

� Arc welding

� Engraving

� Pick-and-place operations

� Material handling and unhandling

� Certain types of machine loading and unloading

� Application of glue, sealants etc. in various manufacturing processes

� Painting and coating applications on
�

��
�

surfaces
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Chapter 9

Costs involved

A rough cost calculation of the robot is given below:

Cost of motors Rs. 9000

Cost of electronics hardware Rs. 14000

Cost of raw material Rs. 20000

Machining cost Rs. 12000

Miscellaneous Rs. 6000

Total: Rs. 61000

Note that these costs do not include the cost of the computer and the software devel-

opment costs.
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Chapter 10

Conclusion

We are of the belief that real engineers should have wide interdisciplinary knowledge.

This project involved a substantial amount of mechanical, electronics, computer and

control engineering. Tackling it has exponentially increased our knowledge base.

Both of us are fascinated by machine automation and robotics, and making our

very own robot has been a long standing dream. It is gratifying to see it converted to

reality. Working on the robot has been a source of joy and inspiration to us throughout

the year. So much so, that we are almost sorry that the project is over. It was one of

those rare instances, where not only the result, but also the process was a source of

continued pleasure.

However, in conclusion, we can only say that building the robot tested our design

skills to the limit. Its success, therefore, is our greatest reward!
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