
��������	AB�C�D�A��	�EF�B�EBA���

	C�	AB�D�B����������EB���

��������F���������

����C������ ���B��!"��#$���DE�C�

��EFC�E��������B��%"�	�&�''��()*(+*)�

,����BD�CB��-�'�EF�C��,����C��"��.�*/))&**01

%�$���"C�B�BAB���-���EFC����$��"�%.2���2''�2%&*(2*)&�!

�!&*))�//��B�E3F��D

Abstract

The use of embedded computers in modern automobiles is enabling in-
creasingly autonomous features. Electronic power train management and
applications in active safety, cooperative driving and navigation show an
underlying trend of the transfer of responsibilities from the human driver
to a vehicle's (semi-)autonomous subsystems. The logical culmination of
this trend would be a completely autonomous vehicle. How should existing
vehicle architectures be evolved to sustain the development and growth of
autonomous functions? We explore the principal problems with existing
architectures, caused due to ad hoc addition of (semi-) autonomous fea-
tures and argue that it is time to rethink automotive architectures from
an autonomous systems perspective. We introduce a pattern that can
help architects and designers to think in terms of autonomy and suggest
where the application of autonomous systems thinking should begin, in
the context of architecture development.

1 Introduction

There is a rising trend of incorporating computers in the modern automobile.
These computers interact with the mechanical subsystems in the automobile and
are used for implementing features like anti-lock brakes, electronic powertrain
management etc. Thus, the modern automobile can be viewed as a cyber-
physical system with a growing number of functions.

The trend of this functional growth is towards increasing autonomy. This
implies that decisions which hitherto needed to be taken by the human driver
are being taken by the vehicle itself and the human driver exerts lower direct
control over the machine's actions. The trend towards autonomy is not new.
It started with the automatic transmission and continued with features like
cruise control. Adaptive cruise control, active collision avoidance etc. are latest
examples of this trend. The usage of computers accelerates this trend because
computers can endow the machine with complex reasoning skills as well as a
degree of control that surpasses human abilities. The logical culmination of
this trend would be a fully autonomous vehicle which can safely drive between
locations and care for its own maintenance needs and those of its passengers.

Can existing automobile electrical/electronic (E/E) architectures1 handle
the twin demands of functional growth and rising autonomy? The general con-
sensus in the automotive industry is that it is extremely di�cult for existing
architectures to support sustained functional growth. This is because, as more
and more functions are added, the system becomes too complex to design, test
and certify in a cost-e�ective way. Furthermore, as more features are added,
especially (semi-)autonomous features, there can be unexpected interactions
among them leading to undesirable emergent behavior. Existing vehicle archi-
tectures do not provide elegant solutions to such problems.

1IEEE 1471 de�nes an architecture as, "The fundamental organization of a system em-

bodied in its components, their relationships to each other, and to the environment, and the

principles guiding its design and evolution."

1

How should vehicle architectures be evolved to support functional growth
and increasing autonomy? To answer the question, it is necessary to investigate
the nature of the problem, before considering the nature of the solution. In
this paper, we argue that it is time to rethink automobile architectures from an
autonomous systems perspective. We put forth the hypothesis that thinking in
terms of autonomy will lead to resolution of multiple architectural issues being
faced today; and that in fact the issues arise in the �rst place because we do
not recognize the automobile for what it is becoming: namely, an autonomous
system. The hypothesis is examined by looking at some speci�c architectural
issues, together with a discussion of how "autonomy thinking" can provide solu-
tion directions. We present a mental model that can help architects to think in
terms of autonomy during the design phase. We also provide an idea of where
such kind of thinking can be generally applied during the architecting process.

Autonomous systems and automotive architecture are studied in multiple re-
search disciplines including software engineering research, arti�cial intelligence,
robot autonomy and architecture [1, 2, 3, 4, 5, 6, 7]. Given the exploratory and
problem formulation nature of this paper, we have chosen to refer to related
state of the art in the various relevant sections of this paper.

Section 2 elaborates on the concept of autonomy and provides the context
and scope for the rest of the paper. Section 3 describes a pattern that can be
used as a mental model or frame while thinking about autonomy. Section 4
highlights some of the problems with existing automobile architectures, while
section 5 provides an idea of how to go about applying autonomous thinking to
the architecting process. Section 6 presents some conclusions and thoughts on
future research goals.

2 Specifying autonomy

If a discussion of autonomy is to be of interest, it is necessary to discuss the
scope and context of the autonomy in question. We begin by associating speci�c
meaning to the terms 'simple', 'automatic' and 'autonomous'. Then we describe
the property of having a Self, which we consider to be essential for the kind of
intelligent autonomy that we address in this paper.

2.1 Simple, automatic and autonomous

All machines need energy and intelligence to perform useful work and may be
divided into three types from an autonomy perspective: Simple, automatic and
autonomous. For a simple machine, both energy and intelligence come from
the user. For an automatic machine, only the intelligence comes from the user.
For an autonomous machine, neither the intelligence nor power comes from the
user, at least insofar as the autonomous function is concerned.

Simple machines or tools are mere amplifying devices that multiply or redi-
rect a force used by the operator. Hammers, levers, wedges etc. belong to this

2

category, but compound machines whose components are of this same category
are also simple tools in this respect.

Automatic machines are those that transform energy to produce useful work,
for example, a windmill or combustion engine. They are capable of performing
a series of operations, ranging from very simple to highly complex sequences.
Automatons have a cyclic nature, in the sense that they return to an initial
state before repeating a sequence. This is true of any motor or engine, and also
of microprocessors2.

Autonomous machines are those that can gather information from their sur-
roundings and produce a decision based on this information that leads to a
successful, desired result. They may use automatic means to execute the deci-
sions. This de�nition has been deliberately created to encompass many levels
from the barely to the fully autonomous. As per this de�nition the simple me-
chanical centrifugal governor or thermostat as well as a sophisticated computer
controlled cognitive robot are autonomous. All of them gather information from
their surroundings and use it to generate relevant results. Whether the informa-
tion gathering process is implicit or explicit, whether the decision making occurs
due to deliberate programming or as a consequence of mechanical construction
is irrelevant. The distinction lies in di�ering levels of autonomy. The level of
autonomy of a machine could generically be de�ned as a function of various
independent metrics and the relations between them. Thus,

A = f(m1,m2,m3, · · · , R)

where m1,m2,m3, · · · are independent metrics, for example, number and
complexity of internal models used to arrive at the decision, and R represents
relations between them. One particular set of metrics is provided in section 3,
but an elaboration of possible metrics and how to combine them to arrive at a
value for autonomy is beyond the scope of this paper.

The ideas in this paper could be applied to intelligent, computer based au-
tonomous systems and subsystems. In this context, we use the de�nition of
intelligence given in [3], as "...the ability of a system to act appropriately in an
uncertain environment, where appropriate action is that which increases prob-
ability of success, and success is the achievement of behavioral subgoals that
support the system's ultimate goal." For intelligent autonomous systems, the
ultimate goal and the criteria for its success would be de�ned externally, while
goals and success criteria at levels internal to the system would be decided au-
tonomously. For the fully autonomous vehicle of the future, the ultimate goals
and success criteria would be de�ned by the vehicle designer and the human
user of the vehicle.

2.2 The Self and the rest

The Greek word "autos" means "self". Automatic means self-moving. Auton-
omy means self-governing, capable of making its own decisions. But what is

2The microprocessor basically fetches the next instruction and executes it. The addition

of software though, can make the computer more or less autonomous.

3

this "Self" in an engineering context?
The Self can be better understood when compared with a system that lacks

a Self. A machine that has no Self is dependent on the decisions of another Self,
that is outside that system. In the case of a regular car, the other Self is the
driver. Introducing a Self in the system means that there is something (algo-
rithms or rules, usually in the form of software) that can interpret a situation,
follow instructions and control some sort of outcome.

Having a Self means having a point of view. From the perspective of the
decision making Self, the surroundings appear to it in accordance with the
perception processes and the understanding that is built into the system, i.e.
internal models. What matters is not the surrounding reality as it is, but as it
appears from this viewpoint. It is also in the Self, that the goals and criteria
for their success end up.

The existence of multiple Selves in a system means that there could be natu-
ral delimitation between them. However, it is by no means certain that a system
is designed taking this into consideration. A self could be a piece of software
running on an ECU � but it could also be software that is distributed across
several ECUs communicating over a databus. If the execution of a self is split
up between components, it creates a need for possibly bandwidth-demanding
communication, but more importantly, it makes it easy to overlook the fact that
it actually is one single unit from the autonomy perspective, one self. Think-
ing in terms of Selves and non-autonomous non-Selves helps to understand the
self-determining aspects of a system, and how they relate to each other.

Therefore, autonomous systems

• accept user commands � to the extent that a user exists � in the form
of behavior requests, not as actuator setpoints. The Self controls the
actuators at all times and does not expose them directly outside the system
boundary.

• are invariant of how the "intelligence" of the Self is achieved. It can be
rule based, algorithm based or whatever. What matters is not the nature
of the intelligence, but the fact that the Self can accept behavior requests
and use its actuators to ful�ll them. In other words, "Autonomous is, as
autonomous does!"

• ultimately need to have one single Self in charge of the system3 and this
is the Self via which the system is identi�ed by its users and environment.
The presence of multiple Selves directing the same system resource is
a recipe for trouble. Some examples of problems that can arise out of
multiple selves are given in section 4.

3although the system may contain subsystems with independent selves.

4

Self
Environment Control

User

Figure 1: Components of the 3+1 pattern

3 3+1: An autonomous design pattern

In this paper, we use the term pattern for an abstract description of a class
of architectures. The purpose of a pattern is to have a template on which to
base the work of creating an architecture that could be implemented. It should
express the fundamental principles of a solution and make it possible, or easier,
to pose the right questions. When looking for a useful pattern for autonomous
systems, the �eld of robotics serves as a useful source of inspiration, since many
robots are designed from the start to be autonomous. Unlike cars, robots don't
have much pre-autonomy baggage to account for.

In this section, it is postulated that all intelligent autonomous systems can
be described by the "3+1" design pattern for context awareness. The level of
autonomy is a function of the extent of presence and complexity of the pattern's
components. The purpose of introducing the 3+1 pattern is that it enables the
designer to see what is actually being constructed.

3.1 Components of the 3+1 pattern

The "3+1" pattern shown in Figure 1 consists of a decision making Self and
internal models of the three domains that the system has to account for: the
user, the environment, and the physical device to be controlled. In this pattern,
they are referred to as Self (S), User (U), Environment (E) and Control (C).
To make the pattern complete, a surrounding boundary, or shell, is included.
Within the boundary, there is one system using internal protocols and logical
interfaces; outside the boundary, there is the physical world that the autonomous
system is operating in. When the things to model are physical objects, sensors
are needed to build these models. When they are other autonomous systems
connected using logical protocols and interfaces, there is no need for sensors,
since the systems are in direct communication4 � but the Selves only see each
other through their internal models, they are not in direct contact.

U, E and C are known by S, but know nothing of each other. The self is
the only part that makes decisions, the other three components are � from the

4A communication channel that delivers information from another system could be con-

sidered as a sensor.

5

perspective of the self � mere �lters (U and E) or an actuator (C).

3.2 The User model

There must be something that tells the system "What to do?". Regardless of
whether this is a car driver, that constantly provides intentions to the system,
or just a set of rules or instructions hardwired into the system at the time of
construction, as in the case of a remote space probe, an autonomous system
always has a mission to ful�ll. It does not have to be a human. Autonomous
systems can work together where one system is the master of another (system-
of-systems). From the perspective of the serving system, it does not matter if
the user is a human or a machine: It will have its internal model of the user
nonetheless. Why model the user? Why not simply let the user control the
serving system directly? Because of the very de�nition of autonomy, the system
is self-su�cient and supplies itself with the necessary control signals to maintain
its operation. What it cannot do, is know what to do, what function to ful�ll,
without some other entity telling it. By modeling the user, the system providing
the intentions, the Self is given a machine "awareness" and can distinguish
between itself and the user. If the user is a human car driver, the model contains
a way to translate what the driver commands, using ambiguous human signals,
into a set of unambiguous control signals that the Self can consider, before
making its decision.

3.3 The Environment model

When performing a task given by the user, the system has to take its surround-
ing into consideration. This is particularly true for robots and self-navigating
vehicles, that need to use sensors of many types to build up an internal soft-
ware representation of objects like roads, walls, other vehicles etc. It is in the
environmental model that the result of the operations of the system will be
visible.

Without an environment in�icting constraints, there is no "problem to solve",
since the output of the system can be determined as a direct function of the
input orders from the user. Also, without the feedback from the environment,
the system cannot take its own actions into account when deciding what to do
next.

3.4 The Control model

An output to control. This can be anything from a heating aggregate with one
input signal, to a complete car, itself a union of hundreds of control parameters.
Without an output to control, the system cannot do anything. A model of the
system being controlled is necessary for the self to make the right decisions.
The better the model, the more accurately it describes the physical reality that
is being controlled, the better the system can predict what e�ects its actions

6

will have. A distinction needs to be made between directly controllable out-
puts within the system (or "body") and indirectly controllable objects in the
environment. The control model refers only to directly controllable outputs.

3.5 The Self

The Self is not a model, in the sense that it is not an internal representation
of an external thing. It may be implicit or explicit, but it is an entity that
constantly makes decisions, based on the above mentioned internal models of
the external world. Without a Self, any action that delivers an output by taking
user input and environment data into consideration, does nothing more than
perform automatic and predictable responses to what the user is doing. With
a Self, the system may choose to respond di�erently to the user requests based
on, for example, its internal state. The Self could choose between "modes" of
the system and modify behavior of the other three models.

In the case of an autonomous car, this actually means that the driver does
not have the �nal say over what happens, albeit a very big in�uence. The
driver provides intentions to be ful�lled, but the point of autonomous driving
is to allow the car to make its own decisions when these are likely to be better,
safer or more convenient than those of the driver. Making the driver still feel
in control is an engineering challenge, but this does not preclude the existence
of a Self.

3.6 Levels of autonomy

The 3+1 pattern provides a way to reason about the level of autonomy of a
system. The latter factors in the presence and complexity of each component
and it's relationship with the Self.

A = f(S,U,E,C,R)

In section 2, we asserted that a simple, mechanical centrifugal governor
or thermostat is an autonomous system. It is a primitive system that does
not have an explicit Self, no user model and rudimentary knowledge of the
environment (rotational speed or temperature) and control (mechanical linkage,
laws of physics). Further, it has no explicit environment model populated by
the sensed parameter (rotational speed or temperature), nor an explicit model
of the control system.

At the opposite end of the spectrum is the fully autonomous car. It would
have a user model, that enables it to interpret the commands and intentions of
the human user. It would have explicit models and representations of the envi-
ronment it operates in, and these would be continuously updated by a stream
of sensor information. It would have control models that can understand and
predict the e�ects of actuators and use them to reach desired setpoints. Finally,
there would be an explicit Self that is in overall charge and provides the identity

7

of the system to the human user. Thus, it would not only have all the 3+1 com-
ponents, but each component would have an appreciable amount of complexity.
Therefore, the level of autonomy of this system would be very high.

4 Some problems with existing architecture

Existing automobile architectures have reached their present stage via a natural
and obvious process of evolution. Initially, there was the completely mechanical
vehicle. As the bene�ts of using the microprocessor as a machine component
emerged, designers starting replacing purely mechanical functions with micro-
processor controlled ones, with generally positive results. As the number of elec-
tronic control units (ECUs) increased, it was natural to connect them in some
kind of a network, so that the units could share information for the purposes
of collaboration, synchronization, error detection etc. Then, as the demand
for network capacity increased, steps were taken to partition the network into
sub-networks of functionally related ECUs. And that is the state of practice
in vehicle architectures: a large number of ECUs executing a number of (semi-
)independent functions. Signi�cant new functions are usually added by connect-
ing a new ECU (optionally, with new sensors and/or actuators) to the existing
network. This pattern of "many intelligent/semi-autonomous units/nodes on a
data bus" is now prevalent throughout the automotive industry. Built around it
is a whole ecosystem of "how we do things", for example: grouping of functions,
development of (black) boxes via consultants/vendors/contractors, safety and
certi�cation of the individual subsystems composed of one or several nodes on
the bus.

Adding features in this ad hoc and bottom-up manner is not a sustainable
approach. An immediate problem is the increasing number of dependencies
between the features, both at a functional as well as technical level. Each feature
ultimately exerts in�uence on some physical or behavioral aspect of the car
(braking, acceleration etc.) When multiple features exert unarbitrated in�uence
on the same aspect, the result can be chaotic. That this doesn't happen today
is as result of careful arbitration strategies by the designers. But as the number
of features and inter-dependencies increase, the problem of con�ict resolution
will become intractable. Indeed, it may no longer be possible for the designers
to even think of all possible things that could go wrong with such a system.
Therefore, this approach is not sustainable. What is needed is a systematic
approach to the architecture that provides "correctness by construction" and
enables composition of systems [8, 9] without unanticipated e�ects.

4.1 Competing Selves

A particular automated feature, such as adaptive cruise control (that maintains
a �xed distance, measured in seconds, to the vehicle in front of it) can be imple-
mented by adding a node to the vehicle network, with an ECU that monitors
relevant sensor data and then controls the necessary actuators to achieve the

8

desired distance. Imagine now adding another feature � emergency braking �
implemented through another, separate ECU. This will be another node that
monitors sensors and controls actuators based on sensor data. In fact, both of
these ECUs can be seen as independent "co-drivers", operating on the same
actuators. Both have a Self. To avoid situations where an actuator gets con-
�icting orders, something has to arbitrate and make a decision about which
node should be the one controlling the actuator in question. This either means
creating another Self, a master node, that handles requests to one actuator � or
having the two nodes communicating and deciding between themselves which
should take precedence and inhibit the other. In the latter case, the Self is not
con�ned to one node. In the former, the question arises how to partition the
responsibilities between nodes that handle these functions, and the master node
that must do the selection.

Both approaches su�er from the same problem: Functionality that is sim-
ilar in kind and uses the same actuators is implemented in separate units, as
competing Selves. Thinking in terms of autonomy throws up the problem here.
An autonomous system needs a single, cohesive Self that uses its components
to generate the behavior expected of the overall system.

4.2 State space explosion

Many functions with many shared resources implies a large state space. In order
to correctly design for this large state space, the designers carve up the state
space into so-called modes that de�ne behavior. Each function or subsystem
can be in one of several tightly speci�ed modes and the transitions among the
modes are well-de�ned. But mode management is simply a di�erent "level of
zoom" in the design fractal. The initial problem is repeated when there exist
a large number of modes in each subsystem and the overall system can be a
combination of modes. There is a "mode space" explosion. Just as it is hard for
a human being to keep track of multiple modes and their combinations, so also
it is hard for an explicitly designed high-level controller to interact correctly
with such a multi-mode system.

If we try to keep our system design tractable using principally similar ap-
proaches, we end up having to solve the same problem every few years. We
merely keep applying the same solution to di�erent levels of the same design
fractal. But a principally di�erent approach would break the design fractal and
may solve the problem once and for all.

Naturally occurring autonomous systems seem to somehow solve this issue.
In the human body, we have several low level functions, for example those regu-
lating temperature, blood pressure etc. They are generally out of reach for the
higher order Self (our mind) but still are mission critical in the sense that they
just have to work and keep working. For short time reactions, we have re�exes
where the Self has no time to react. Classical arti�cial intelligence (AI) and
robot control architectures provide di�erent system structures including delib-
erative (higher order planning) and reactive (sensory reaction) control systems.
An example of a layered architecture for autonomous robotics is given in [10].

9

Such system structuring could be applied to automobile architectures too.

4.3 Partitioning and re-partitioning

The human brain can handle a limited level of complexity. It is di�cult to
design systems whose complexity is more that what our brains can handle.
Therefore, ways are found to reduce the overall system complexity into man-
ageable portions. Foremost of such ways, is to partition or divide the system
into parts and decide their respective responsibilities and relationships. The
partitioning is generally done by keeping in mind the functionalities and data
�ows. In current automotive practice, this is achieved by setting up a system
with lots of nodes on a Controller Area Network (CAN) bus. As more and more
functions/features get added to the system, existing partitions get redrawn, but
each redrawing of the partitions follows, in principle, the same reasoning as the
previous refactorings.

More recent automotive architectures are moving beyond the "�at" pattern
of many nodes on a bus. Instead, they have a hierarchical structure, but it
essentially follows the same methodology. Based on our experience with the
automotive industry, the process evolves somewhat like this:

1. Initially, there are lots of nodes on a CAN bus, and bandwith problems
arise. Therefore

2. Multiple CAN buses are added and existing nodes are redistributed among
them. But as even more nodes are added, even this system starts becoming
too complex

3. Then a tree like structure is created, with the main trunk being a high-
bandwidth bus (like FlexRAY) and the branches being CAN or Local
Interconnect Network (LIN) buses with individual nodes. The nodes are
assigned to branches based on their functions and the data�ows needed
between them i.e. via the traditional reasoning process

Thus, current automotive architecture structuring practices are not really solv-
ing the core problem of complexity management, but merely pushing it away
towards the subsequent generation. This is an insu�cient approach towards
designing the autonomous car of the future. What is needed, is a pattern that
is conceptually di�erent from, "many intelligent/semi-autonomous units/nodes
thrown together and made to cooperate on a (CAN) bus". Instead, patterns for
structuring [11] and decentralization [12] should be explored that are inherently
conducive to autonomy and which could serve as a basis for a di�erent kind of
partitioning.

10

5 Autonomy and automotive architecture: Where

to begin?

Can principles of autonomous robot architectures [13, 4, 14, 6, 5] and the con-
struction of intelligent machines be applied to automobiles? If we equate au-
tonomy with a system following the 3+1 pattern, the conclusion would be that
an architecture based on 3+1 will be more conducive to intelligent autonomy.
What would that mean in practice? How can we maintain the peculiarities of
automotive software, architecture and development processes [15, 16] and yet
evolve them to autonomy? Where to begin this process?

Consider, for the sake of argument, a system that consists of various dis-
tributed sensors and actuators and a single central processing/reasoning unit
that constitutes the Self. Let such a unit be denoted 'Big Fat Computer (BFC)'.
The BFC reads all sensor inputs, has total control over all actuators and imple-
ments a single "thread of awareness". Thus, there is a single Self, which is One
i.e. not split up into intermittently communicating parts, that understands both
the behavior expected of the system, as well as the means available to achieve
the behavior (sensors and actuators). Such a Self would result in a completely
cohesive system, with no unresolved internal con�icts.

Creating such a system would still present problems. Automotive engineer-
ing has since long moved past a single monolithic computing entity and dis-
tributed systems have arrived and stayed. The real question then is, "How
should a system be created that leverages the advantages of distributed system
design and methods, while ensuring that all distributed parts e�ectively form a
single, overall reasoning system?" In other words, how should a unique Self be
created in a distributed way?

Could an autonomous system be composed out of autonomous constituent
parts? Can the autonomous car have an autonomous engine, an autonomous
transmission, an autonomous climate control and so on? From the perspective
of the user of the autonomous car, this question is largely irrelevant. What is
important is that there should be a single Self in the car that is accepting the
user's commands, and which will be held accountable for the entire behavior of
the car. Now, whether this Self should itself control every single actuator and
function, or whether it should merely choreograph multiple autonomous systems
to reach the end result is a design question. We need a process both to answer
this design question as well as develop the answer.

Figure 2 shows a simpli�ed view of how an architecture is developed. This
is a top down process, that begins with the so called functional or conceptual
architecture view [17, 18] that shows the function structuring. This is basi-
cally drawing up boxes and understanding their roles, behavior, hierarchies, de-
pendencies and interactions. The function structuring decides how the system
should be broken down into functional components and how the components
will together ful�ll the system's goals. It can also be thought of as the sys-
tem behavior, on which a logical structure is imposed. The bottommost part
is the so-called implementation architecture view. It shows the implementation

11

Functional architecture

Implementation architecture
Mapping

Figure 2: Architecture layers

12

speci�c details, the computing hardware and software, the communication and
networking choices and so on. This is the architecture as it is actually imple-
mented. The middle is the mapping from the conceptual to the implementation
architectures. It shows which functionality is implemented where and how.

Systems thinking from an autonomous perspective can be applied to the
conceptual and implementation architectures as well as their mapping. We sug-
gest however, that the start should be made with the conceptual architecture
because this is the foundation on which the rest of the development is made.
How should the function hierarchies be designed in a way to support auton-
omy? What are the principles and rules that are conducive to autonomy, or
detrimental to it? An automotive architect thinks primarily in terms of visible
automobile features like the anti-lock brake system or the engine management
system or the cruise control. An architect designing an autonomous mobile
robot may think in terms of high level features that generate motion vectors
and low level subsystems responsible for the execution of the motion vector. In
any case, the functions, their partitioning and hierarchy is the �rst step. This
can then be drilled down to the implementation.

6 Conclusion

Can anything at all be predicted about the future of cars as transportation
devices? Yes, because no matter what the fuel will be, or what regulations the
cars will have to conform to, it can safely be assumed that embedded intelligence
will continue to be added to cars. Advances in other technological �elds makes
features like self-driving and navigation possible, eventually creating a demand.
(There are big potential economic savings for society if self-driving cars could
eliminate congestion, increase the usage of existing roads and of course minimize
the number of accidents.) The functional growth in cars can increase the burden
on the user, who has to keep track of them, or they will be of no use. O�oading
this burden is, by de�nition, autonomy. The development of fully self-driving
cars on a large commercial scale is no longer a question of possibility, but a
matter of time.

It is time to stop thinking of the automobile as an increasingly mecha-
nized (and computerized) horse-drawn carriage and instead think of it as an
autonomous robot endowed with arti�cial intelligence. Such level of autonomy
has a strong impact on the functional, software and electronic architecture of a
vehicle. This impact must be studied and considerations for autonomy should
be incorporated into the architecture. Research in automotive systems devel-
opment must take into consideration and build on results from the areas of
arti�cial intelligence and robotics.

This paper not only stresses on autonomy as an inevitable trend in the
development of automobiles, it also argues that thinking from the perspective
of autonomy has the potential to resolve some outstanding issues in current
vehicle architectures. The mental model presented can be used to think in
terms of autonomy. A starting point for the application of autonomous systems

13

thinking during the architecting process has also been suggested.
The creation of an explicit autonomy based functional design for the mod-

ern automobile, which includes all current features and arranges them into au-
tonomy friendly hierarchies would be a natural next step along this research
direction.

References

[1] O. Larses, Architecting and Modeling Automotive Embedded Systems. PhD
thesis, Royal Institute of Technology, Stockholm, Sweden, 2005.

[2] M. Broy, �Automotive software and systems engineering,� Proceedings Sec-
ond ACM and IEEE International Conference on Formal Methods and
Models for CoDesign 2005 MEMOCODE 05, vol. 0, pp. 143�149, 2005.

[3] J. Albus, �Outline for a theory of intelligence,� IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. 21, no. 3, pp. 473�509, 1991.

[4] J. Albus, �A reference model architecture for intelligent systems design,�
An introduction to intelligent and autonomous control, pp. 27�56, 1993.

[5] B. Hayes-Roth, �A blackboard architecture for control,� Arti�cial Intelli-
gence, vol. 26, pp. 251�321, July 1985.

[6] A. J. Barbera, J. S. Albus, and L. S. Haynes, �RCS : The NBS Real -Time
Control System,� 1984.

[7] H. Tian�eld, �Fundamentals and Architectures of Complex Distributed Sys-
tems,� Systems, Man and Cybernetics, 2008. SMC 2008., pp. 2471�2475,
Oct. 2008.

[8] G. Brat, E. Denney, K. Farrell, D. Giannakopoulou, A. Jónsson, J. Frank,
M. Boddy, T. Carpenter, T. Estlin, and M. Pivtoraiko, �A robust com-
positional architecture for autonomous systems,� in Aerospace Conference,
2006 IEEE, pp. 8�pp, IEEE, 2010.

[9] S. Ilieva and M. Zagar, �GENESIS - A Framework for Global Engineering
of Embedded Systems,� Genesis, pp. 87�93, 2008.

[10] R. Brooks, �A robust layered control system for a mobile robot,� IEEE
Journal on Robotics and Automation, vol. 2, no. 1, pp. 14�23, 1986.

[11] H. Tian�eld, �Structuring of large-scale complex hybrid systems: From
illustrative analysis toward modelization,� Journal of Intelligent &
Robotic Systems, pp. 179�208, 2001.

[12] M. Torngren and J. Wikander, �A decentralization methodology for real-
time control applications,� Control Engineering Practice, vol. 4, no. 2,
pp. 219�228, 1996.

14

[13] J. S. Albus, R. Lumia, J. Fiala, A. J. Wavering, and H. G. McCain, �NAS-
REM - The NASA/NBS Standard Reference Model for Telerobot Control
System Architecture,� in proceedings of the 20th International Symposium
on Industrial Robots, no. NIST 1235, NIST, 1989.

[14] J. Albus and F. Proctor, �A reference model architecture for intelligent hy-
brid control systems,� in Proceedings of the 1996 Triennial World Congress,
International Federation of Automatic Control (IFAC), 1996.

[15] M. Broy, �Challenges in automotive software engineering,� in Proceedings of
the 28th international conference on Software engineering, ICSE '06, (New
York, NY, USA), pp. 33�42, ACM, 2006.

[16] V. Schulte-Coerne, A. Thums, and J. Quante, �Challenges in Reengineer-
ing Automotive Software,� Software Maintenance and Reengineering, 2009.
CSMR '09. 13th European Conference on, pp. 315�316, Mar. 2009.

[17] D. Soni and R. Nord, �Software architecture in industrial applications,�
Software Engineering, 1995., pp. 196�196, 1995.

[18] P. Drongowski, �Software architecture in realtime systems,� in Real-Time
Applications, 1993., Proceedings of the IEEE Workshop on, pp. 198�203,
IEEE, 1993.

15

