
A Generic Framework for

Robot Motion Planning and Control

SAGAR BEHERE

Master thesis in Systems, Control and Robotics

Supervisors: Dr. Patric Jensfelt, Dr. Christian Smith

Examiner: Dr. Danica Kragic

To my parents,
who didn't always understand

but always accepted and supported.

Abstract
This thesis deals with the general problem of robot motion plan-

ning and control. It proposes the hypothesis that it should be

possible to create a generic software framework capable of deal-

ing with all robot motion planning and control problems, inde-

pendent of of the robot being used, the task being solved, the

workspace obstacles or the algorithms employed. The thesis work

then consisted of identifying the requirements and creating a de-

sign and implementation of such a framework. This report mo-

tivates and documents the entire process. The framework de-

veloped was tested on two di�erent robot arms under varying

conditions. The testing method and results are also presented.

The thesis concludes that the proposed hypothesis is indeed valid.

Keywords: path planning, motion control, software frame-

work, trajectory generation, path constrained motion, obstacle

avoidance.

Referat
Ett generellt ramverk för rörelseplanering och styrning

för robotar

Denna avhandling behandlar det generella problemet att planera

och reglera rörelsen av en robot. Arbetshypotesen är att det är

möjligt att skapa ett ramverk som kan hantera alla rörelseplanerings-

och reglerproblem, oberoende av vilken robot som används, uppgift

som skall utföras, arbetsområdets beska�enheter eller de algorit-

mer som används. Examensarbetet bestod i att identi�era behov

och skapa en design för och implementera ett sådant ramverk.

Denna rapport motiverar och dokumenterar hela processen. Ramver-

ket har testats på två dolika robotarmar under olika förhållanden.

Testmetod och resultat från dessa tester presenteras. Exjobbets

slutsats är att den föreslagna hypotesen gäller.

Acknowledgements

Pride of place goes to Patric Jensfelt. Words fail me if I try to express the immense gratitude
I feel towards him. A guru in every sense of the word, Patric has been my thesis supervisor,
professor, Master program director and the ultimate solution to all problems. My time in
Sweden has been fun and interesting due to the opportunities he provided.

Christian Smith answered questions as fast as I could ask them and often, faster. Learn-
ing from him is like drinking from a �rehose. He also made available the Powercube robot
arm for me to test my theories on.

Mitul Saha provided support for the Motion Planning Kit used in the thesis. He even
changed the licensing terms to better suit my requirements! Motion planning is a critical
part of the thesis and Mitul's responsiveness gave me a lot of reassurance.

Jeannette Bohg planted the seed of the problem in my mind. Without her, I would be
writing a thesis on a completely di�erent topic.

Alper 'the Bhai' Aydemir uncomplainingly bore my rantings on Life, the Universe and
Everything. I utilized many of the technical ideas and approaches that seem to �oat around
him like a cloud.

Xavi Gratal Martinez was the single point source of support for the KUKA robot arm
and Schunk Hand used during the thesis.

The thesis was carried out with the infrastructure provided by the Center for Au-
tonomous Systems (CAS) at KTH. The institute's role is gratefully acknowledged.

Contents

1 Introduction 1

1.1 The motion planning and control problem 1
1.2 Motivation for the master thesis . 2
1.3 Contribution and outline of the thesis . 3
1.4 Terminology . 3

2 Current state of the art 5

3 A theoretical overview 7

3.1 Path planning . 7
3.1.1 The path: representation and characteristics 7
3.1.2 Properties of planning algorithms . 9
3.1.3 Probabilistic roadmap methods . 10

3.2 Trajectory generation . 11
3.2.1 Fitting a set of data points . 12
3.2.2 Imposition of a timing law . 13

3.3 Motion control . 15
3.4 Sensing and estimation . 16

4 Framework requirements 18

4.1 Design requirements . 18
4.1.1 Must have . 18
4.1.2 Good to have . 19
4.1.3 Wish list . 20

4.2 User requirements . 21

5 Implementation 22

5.1 The framework structure . 22
5.1.1 The role of each component . 23
5.1.2 Anatomy of a component . 24
5.1.3 Intercomponent communication . 25
5.1.4 Plugin management . 27

5.2 The SOAP server component . 27
5.3 The motion control component . 28

5.3.1 The time-invariant motion controller 29
5.4 The path planner component . 30

5.4.1 The MPK planner plugin . 31
5.5 The robot component . 33

5.5.1 The KUKA KR5 Sixx R850 robot plugin 33

Contents

5.6 The libhyperpoint library . 34
5.7 The libsarathi client library . 34

6 Testing 35

6.1 Test tools . 35
6.1.1 Parth . 35
6.1.2 APIease . 36

6.2 Testing methodology . 38
6.3 An example use case . 40

7 Conclusion and future Work 42

7.1 Conclusion . 42
7.2 Future work . 42

Appendices 44

A Creating robot models 44

A.1 Introduction . 44
A.2 Quickstart . 44
A.3 Detailed steps . 44
A.4 Coordinate system visualization . 46

B Describing scenes 49

B.1 Introduction . 49
B.2 Quick summary . 49
B.3 Detailed steps . 49

B.3.1 Understanding the coordinate system of your robot model 49
B.3.2 Creating the scene �le . 50
B.3.3 The complete scene description �le 56

Bibliography 57

Chapter 1

Introduction

Robots have the potential to improve e�ciency, safety and convenience of human endeavors.
To realize this potential, research in robotics necessarily involves investigation into a broad
range of disciplines. A fundamentally important discipline is that of motion planning and
control. It is important because motion as a requirement is common to all robots. Robots
need to move in order to do something useful, and this holds true regardless of whether the
robot is mobile or �xed, autonomous or non-autonomous.

While the fact remains that all robots need to move, the actual motion executed is highly
dependent on the robot under consideration, the task it is ful�lling and the constraints it
operates under. Therefore, numerous concepts, theories and algorithms have been developed
for solving speci�c classes of motion problems.

Considering the multitude of robots, theories and applications, the solutions of robot
motion tasks are often surprisingly narrow. Narrowness implies that the same solution is
rarely used for solving a problem di�erent from what it was immediately designed for. This
is surprising because adapting an existing solution to a similar problem involves, in general,
a lower quantum of work than solving the problem all over again.

This thesis is a step towards creating a universal solution through which knowledge of
motion planning and control can be applied to a robot motion task, regardless of the task,
the robot or the theory involved.

The abstract notion has now been introduced. The rest of this chapter makes it pro-
gressively more concrete.

1.1 The motion planning and control problem

The locus of points along which the robot needs to move in order to go from one point to
another is called the path. Determining the path can be a non-trivial problem, especially
if obstacles are present in the robot's environment. Obstacles are any physical objects in
the environment which can potentially impede the robot's motion. Thus, given a destina-
tion to be reached, the core problem of motion planning involves �nding a path from the
current robot location to the destination without colliding with obstacles, if any. The core
problem can be advanced by placing additional demands on the characteristics of the path.
Characteristics of the path refer to the velocities/accelerations of the robot along the path,
the energy expended in moving along the path, the time needed for completing the motion
et cetera.

Once a suitable path has been found, the robot actuators should generate the correct
forces/torques at all instants, so that the robot moves along the path. This is the control

1

CHAPTER 1. INTRODUCTION

problem.
Typically, robots are designed to ful�ll speci�c tasks and appropriate algorithms for

planning and control are incorporated in the robot control software. Often, high level
planning algorithms are absent and the robot control software merely drives the robot
according to programmed motion commands. In such a case, the robot programmer is
responsible for specifying the proper paths to be followed.

1.2 Motivation for the master thesis

It is not uncommon in robotics for the same solution to get implemented many times over.
Some reasons are

• Existing implementations are tied down tightly to a speci�c robot model

• The implementations are owned by proprietary companies and thus not freely available
for others to use

• An implemented algorithm depends on a host of other software services from which it
cannot be easily extracted for generic use. Hence, software developers often examine
existing code and then write their own version

• The diversity of robots, control techniques and user interfaces makes it di�cult to
develop a 'one size �ts all' type of solution. It is simply more convenient to narrow
down the requirements and generate a tailor made solution for them

The repeated solutions to similar problems consume e�ort and creativity that could be
applied to solving more original problems. The motivation for this master thesis arose from
pursuing a �What if ... ?� line of thought

• What if a single software could be used to control motion of any robot?

• What if the same software could be used for any robot motion task?

• What if the same software could execute any desired algorithm(s) to solve the task?

• What if the same software could be used to provide a set of 'robot motion services'
to interested parties?

• What if the software was free, open, extensible with a growing set of supported robots,
algorithms and areas of application?

This is a good scenario for applying the software framework paradigm. In a software
framework, common code providing generic functionality can be selectively overridden or
specialized by user code providing speci�c functionality[22]. The specialized user code in this
case would be the code for interacting with a particular robot, or a speci�c path planning
algorithm that needs to be applied to the problem being solved and so on.

There are numerous advantages to the framework approach. In a scenario like a robotics
research lab, deployment of the framework can provide researchers with a uniform interface
to all the lab robots. Code can be written to interact with the framework, instead of a
speci�c robot. Thus, the code would then be immediately applicable to all similar robots
which the framework supports. The same algorithm can be tested on di�erent robots, or
di�erent algorithms can be quickly run on the same robot. Quirks of manufacturer speci�c
software need not in�uence the interaction with the robot. The framework services can also

2

CHAPTER 1. INTRODUCTION

be used for motion sub-problems like �nding collision free paths under di�erent conditions,
solving inverse kinematics, moving the robot along speci�ed paths etc. The con�gurability
of the framework also implies that the same generic software can be used to create a solution
highly tuned to a speci�c problem.

A potential risk in the creation of a generic solution lies in the possibility that some
design decisions may not be the most optimal for a certain problem. In such cases, a tailor
made solution would be more appropriate. However, the existence of this risk does not
negate the importance or utility of a generic solution. The presence of a generic solution
does not imply an obligation to apply it, while its absence will not improve the situation.
Other problems continue to exist, to which the generic solution is satisfactorily applicable.

A generic motion planning and control framework has the potential to be advantageous
for a wide variety of robot use cases. Realizing this potential is su�cient motivation for
pursuing the development of such a framework as a Master thesis.

1.3 Contribution and outline of the thesis

The working hypothesis throughout the thesis is that it is possible to have a generic software
framework for robot motion planning and control, which can be con�gured to solve speci�c
robot motion tasks. The contribution of this thesis is the validation of the hypothesis via
realization and real-world testing of such a framework. The realized framework is also
made available to the robotics community as a ready-to-use 'product'. Additionally, the
thesis work also resulted in the creation of tools to test the realized framework and the
development of a software library which can be used by software programs to interact with
the framework.

Chapter 2 of this thesis report examines the current state of the art by looking at existing
solutions which can directly or indirectly be used for validating the hypothesis. Chapter
3 presents a quick overview of the theory needed to tackle a motion planning and control
problem. Chapter 4 discusses the requirements the framework must ful�ll to achieve its
functional goals. Chapter 5 discusses the implementation of a speci�c framework which was
developed for validating the hypothesis. Chapter 6 describes how the implementation was
tested and presents a real-world use case. Chapter 7 concludes the report and discusses
possible future work.

1.4 Terminology

Some terms used in this report have a speci�c meaning in the context of robot motion
planning and control. They are described here

Robot con�guration A complete speci�cation of the position of every point of the phys-
ical robot. Usually described by the set of values of all the robot degrees of freedom

Con�guration space The space of all possible robot con�gurations

Joint space Same as con�guration space (Used for kinematic chain robot manipulators)

Cartesian space The normal Euclidean space in which the robot operates

Operational space Same as Cartesian space

Forward kinematics A mapping from con�guration space to Cartesian space

Inverse kinematics A mapping from Cartesian space to con�guration space

3

CHAPTER 1. INTRODUCTION

Sarathi The name of the robot motion planning and control framework developed as part
of this thesis work

Parth The name of a software tool used for scene visualization and testing of Sarathi

4

Chapter 2

Current state of the art

This thesis is about the design and development of a generic software framework for robot
motion planning and control. Thus, a survey of the current state of this art involves a
discussion of existing software that also aspires towards a similar goal. The focus is not on
solutions to motion planning and control, nor on generic software frameworks. The art in
this context refers to the speci�c use of software frameworks to create a generic solution
applicable to any motion planning and control problem. A fairly rigorous search turned up
only two other software that could qualify for being generic motion planning and control
frameworks. These are OpenRAVE[15] and RobWork[19].

OpenRAVE is an open-source, cross-platform architecture for integration and testing
of high-level scripting, motion planning, perception and control algorithms. Targeted for
autonomous robotic applications, it includes a seamless integration of 3-D simulation, visu-
alization, planning, scripting and control. A plugin architecture allows users to easily write
custom controllers or extend functionality. OpenRAVE focuses on autonomous motion
planning and high-level scripting rather than low-level control and message protocols. For
the latter purposes, it includes interfaces to other popular robotics packages like Player[17]
and ROS[20]. OpenRAVE addresses a superset of the general motion planning and control
problem. It is like a 'Do-It-Yourself' kit providing software building blocks for generating
a speci�c application.

RobWork is a framework for simulation and control of robots with emphasis on industrial
robotics and its applications. Its major goal is to provide a single framework for o�ine and
online robot programming including modelling, simulation and (realtime)control of robots.
A separate application called RobWorkStudio is available for visualization of the robot
and its workcell. There are some startling similarities between RobWork and Sarathi, the
framework developed during this thesis. Unfortunately, the work on both software was
carried out in isolation and the �rst releases were made almost simultaneously, at which
point the developers became aware of the existence of the other software. Despite the
similarities, some important di�erences still exist in the way RobWork and Sarathi have
been implemented. RobWork attempts to de�ne uniform global data structures for robots,
robot data and workcells. It includes classes for de�ning vectors, kinematic frames, path
planners and so on. Thus it appears that all the concepts within RobWork are tightly
integrated with each other. Although the RobWork description refers to it as a 'framework',
it exists as a collection of C++ libraries and is referred to as such in its documentation.
Sarathi, on the other hand is not a library. It exists as a framework, providing a set of
services. Client programs need to connect to Sarathi to use its services. The components in
Sarathi are loosely coupled. There is no uniform representation for the data each component

5

CHAPTER 2. CURRENT STATE OF THE ART

uses internally. Since RobWork exists as a libary, it should be possible to use its features for
writing plugins for Sarathi. Thus, RobWork can potentially be used for rapidly extending
Sarathi.

6

Chapter 3

Motion planning and control:
A theoretical overview

A practical solution of a motion planning and control problem involves solving several sub-
problems. This chapter gives an introduction to the main sub-problems, which are

1. Path planning

2. Trajectory generation

3. Motion control

4. Sensing and estimation

Each sub-problem is a subject of extensive research and no attempt is made to provide
a comprehensive survey of the �eld. Rather, the intention is to provide su�cient theo-
retical knowledge necessary for grasping the solutions which could be implemented in the
framework. References are provided to sources of further, in-depth knowledge.

3.1 Path planning

Physical objects in the workspace of a robot present potential obstacles to its motion.
Path planning is the process of �nding a path which the robot should follow, in order to
avoid collisions with these obstacles. A path denotes the locus of points in the robot's
con�guration space, or in cartesian space, which the robot has to follow in the execution of
the assigned motion. Note that a path does not involve the notion of time, it is a purely
spatial concept.

An in-depth discussion of robot motion planning is given in [45]. More general informa-
tion on planning algorithms, with a speci�c section on motion planning is given in [63].

3.1.1 The path: representation and characteristics
A path is usually represented either as a parametric curve in space or directly as an ordered
set of points.

The parametric representation is

p = p(u), uε[umin, umax] (3.1)

7

CHAPTER 3. A THEORETICAL OVERVIEW

where p(.) is a R6 vector valued function in case the path is in cartesian space1. In case
the path is in con�guration space, p(.) is a (Nx1) vector valued function where N is the
dimension of the con�guration space. In practice a geometric path is composed of a number
of segments, i.e

p(u) = pk(u), k = 0, ..., n− 1 (3.2)

In simple cases, the polynomials pk describing each segment can be analytically obtained
by means of circular/straight line motion primitives. An in-depth treatment of this topic
can be found in [48], [75] and [32]. More often, the polynomials must be obtained by using
more complex approaches which guarantee continuity of the curve and its derivatives up to
a desired order. This continuity is desirable because successive derivatives of a path repre-
sent velocity, acceleration, jerk and so on. Discontinuities in these quantities have adverse
e�ects on the robot dynamics and actuators. In most cases, the acceleration needs to be
continuous while the jerk may be discontinuous but should be below a speci�ed limit. In
case of fast dynamics and high inertias, it is desirable to have continuous jerk as well. The
use of a parametric path for trajectory planning usually requires that the path be geomet-
rically as well as parametrically continuous. Geometric continuity implies that the path is
geometrically smooth, while parametric continuity implies that the parametric derivative

vectors
(

dp
du ,

d2p
du2 , ...

)
are continuous. Two in�nitely di�erentiable segments meeting at a

common point, i.e. pk(1) = pk+1(0)2 are said to meet with n-order parametric continuity
denoted by Cn, if the �rst n derivatives match at the common point, that is if

p
(i)
k (1) = p

(i)
k+1(0), i = 1, ..., n (3.3)

Classical approaches for obtaining continuous derivatives are based on B-spline functions,
Bézier curves or NURBS[85] which are piecewise polynomial functions de�ned by

p(u) =
m∑

j=0

pjBj(u) (3.4)

where pj are the control points which determine the shape of the curve by weighting
the basis functions Bj(u). More details, de�nitions and signi�cant properties of B-spline,
Bézier and Nurbs curves with applications to motion control can be found in the appendix
of [32].

The output of typical path planning algorithms, however, is rarely in the form of a
parametrized curve. Path planning algorithms generally output a path as an ordered se-
quence of points3. The distribution of these points is usually dependent on the distribution
of obstacles in the workspace as well as the subset of the workspace through which motion
is desired. In general, no assumptions can be made about the distribution of points output
by the path planner. In this case, the task of building a parametric representation with con-
tinuity of the desired order is left to the trajectory generator. This is because the trajectory
generator can perform this task while simultaneously optimizing some motion parameters.
Also, generating a continuous curve through the output of the path planner can be done
in a variety of ways depending on the task being carried out. All these considerations do
not a�ect the path planning process and hence an ordered set of collision free points is
considered an acceptable output from a path planner.

1(6x1) because we assume a minimal representation of cartesian space which lies in R6.
2It is assumed that uε[0, 1]∀k.
3The points can be in con�guration or cartesian space, depending on the path planner.

8

CHAPTER 3. A THEORETICAL OVERVIEW

3.1.2 Properties of planning algorithms
[45] characterizes a planning algorithm according to the task it addresses, properties of
the robot solving the task and properties of the algorithm. This characterization helps in
selecting an appropriate algorithm for the problem under consideration.

The task solved can be either of navigation, coverage, localization or mapping. Navi-
gation involves �nding a collision free path from one robot position to another. Coverage
involves passing a sensor over all points in a workspace. Localization is the problem of using
sensor data and a map to determine the position of the robot. Mapping refers to construct-
ing a representation of an unknown environment which is useful for the other three tasks.
The representation is constructed from data obtained while the robot is moving around, and
hence a good path for the motion must be determined. The framework under consideration
in this thesis is mostly devoted to the navigation problem.

The e�ectiveness of a planning algorithm depends heavily on the robot utilizing that
plan. This is because the robot characteristics determine the degrees of freedom available
to the planner, the topology of the con�guration space and the constraints on the robot
motion (for example, holonomicity). If the robot is modeled with dynamic equations, the
force and torque data can be used to compute paths optimized for these variables.

An important characteristic of the planner is the space it works in. This could either
be the robot's operational space (i.e. cartesian space) or the robot's con�guration space.
The space has an impact on the representation of obstacles. Speci�cally, the di�culty of
representing an obstacle in con�guration space[87, 65] increases with the number of degrees
of freedom of the robot. A path generated in cartesian space can be directly checked
for intersection with workspace obstacles. However, con�guration space paths provide an
important advantage if the robot motion can be commanded in con�guration space. This is
because the problem of motion singularities can be avoided or easily resolved in con�guration
space.

A planner can simply generate a path that satis�es all constraints or it can additionally
optimize some parameter(s) while generating the path. Commonly optimized parameters
are the path length, the energy consumption while following the path and the execution
time for the motion.

Computational complexity is another property of the path planner. Computational
complexity gives an indication of how much the planner performance will degrade when
the inputs are scaled up. The inputs could be the degrees of freedom of the robot, the
number of obstacles etc., while the planner performance can be measured in the running
time, memory requirements and so on. The performance can be a constant or a polynomial
or exponential function of the input size. A planner is often considered practical only if it
runs in polynomial time or better with respect to input size [45].

A very desirable property of path planners is completeness. A planner is complete if it
can always �nd a solution (if one exists) or indicate failure in �nite time. As the degrees of
freedom of a robot increase, complete solutions become computationally intractable. Hence,
weaker forms of completeness exist. A planner is resolution complete if it can �nd a solution
in �nite time at a given resolution of discretization, if such a solution exists. A planner is
probabilistically complete if the probability of �nding a solution (if it exists) approaches 1
as time tends to in�nity. Probabilistic planning methods have found favor in recent times
because they work very well with high-dimensional con�guration spaces and their execution
speed under these conditions can be several orders of magnitude faster than other known
methods.

A planner is considered o�ine if it constructs the entire plan before motion starts. On the
other hand, an online planner incrementally constructs the plan as the robot moves. Online

9

CHAPTER 3. A THEORETICAL OVERVIEW

planners may require the use of additional sensors to detect obstacles during motion, and
the ability to process that sensor information in real-time. However, with fast computers
and feedback loops, the distinction between o�ine and online planning has blurred. This
is because if an o�ine planner executes quickly enough, it can be used to calculate a new
path when a sensor update provides changed data about the environment.

The properties of planners described here generally clash with each other in the sense
that performance cannot be simultaneously improved on all fronts. Therefore, depending
on the problem being solved appropriate tradeo�s need to be made.

3.1.3 Probabilistic roadmap methods
Planning algorithms, together with their variations and optimizations are legion. A survey
of planning algorithms is outside the scope of this report. An entire book devoted to motion
planning is [45]. Chapter 12 of [75] provides an overview of popular planning methods for
robotics, with a brief discussion of the theory and applicability of each method. This aim of
this section is to provide an understanding of the principles behind one of the most popular
planning techniques: Probabilistic planning.

Probabilistic planners represent a class of relatively modern methods which work with re-
markable e�ciency, especially in problems involving high dimensional con�guration spaces.
They are therefore well suited to solving problems involving generic robotic manipulators
(which often have upwards of 5 degrees of freedom). Extensions are available for applying
the theory under non-holonomic constraints and thus these planners can be used for motion
planning of non-omnidirectional mobile robots as well. The breadth of applications makes
these planners worth of study.

Probabilistic planning for robots was developed at many sites [58, 80, 68, 60, 59, 61,
27, 26]. The probabilistic foundations of the method are discussed in [55]. Probabilistic
methods fall under the more general category of sampling based methods. A generic survey
of sampling based methods is found in [25]. Analysis and path quality of sampling based
methods is discussed in [53]. A comparative study of probabilistic roadmap planners can
be found in [51].

Probabilistic planners work by determining a �nite set of collision free con�gurations
which are used to represent the connectivity of the free con�guration space. These con�gu-
rations are then used to build a roadmap that can be employed for solving motion planning
problems. At each iteration of the planner, a random con�guration is generated from a
sampling of the con�guration space. See [52] for an overview of some of the sampling tech-
niques used. The generated con�guration is checked for collision (as well as contact) with
the workspace obstacles4. If the con�guration is collision free, it is added to the roadmap
and connected to previously stored near5 con�gurations if possible. The connection is made
by a procedure known as a local planner. The local planner usually constructs a straight
line segment in con�guration space between the two points in question. The segment is
then checked to see if it is collision free. This is usually done by uniformly sampling the
segment at a su�cient resolution and checking if the samples are collision free. Adaptive
collision checking algorithms also exist which guarantee detection of collisions[73] if they are
present. If the segment has collisions, it is discarded and a local path between the points
cannot be established.

The planner iterations usually stop after a predetermined number of iterations have been
reached. At this stage it is possible to solve the path planning problem by connecting the

4Collision checking is, in general, an extremely fast activity.
5The nearness metric can be de�ned in a variety of ways. A common way is to use Euclidean distance

in the con�guration space.

10

CHAPTER 3. A THEORETICAL OVERVIEW

start and end con�gurations of the desired motion to the roadmap by collision free local
paths. Then a route through the roadmap can be found along free local paths. If a large set
of candidate paths become available over time, they can be heuristically pruned down to
smaller subsets as described in [36]. Figure 3.1 shows an example roadmap and the solution
to a particular problem.

Figure 3.1. A probabilistic roadmap and solution to a particular problem. [75]

If a solution cannot be found, more iterations of the planner can be carried out to
generate a more detailed roadmap. Once the roadmap has been su�ciently developed, new
instances of the problem can be solved with remarkable speed. Every new query of the
planner improves the usage both in terms of connectivity and time e�ciency.

Probabilistic roadmap algorithms are simple to implement. In particular, the generation
of a con�guration space representation of the obstacles is completely avoided.

The basic concept of probabilistic roadmaps can be optimized for further reduction of
the time needed to get a solution. An important development is single-query probabilistic
methods. These methods do not rely on the generation of an exhaustive roadmap of the
entire free con�guration space. Rather, for each query, a roadmap of only the relevant part
of the con�guration space is constructed. The bidirectional RRT method is an example of
a single query approach. It makes use of a data structure called RRT (Rapidly-exploring
Random Tree). More information about path planning with RRTs can be found in [56, 62,
64]. The Single-query Bi-directional Lazy (SBL) planner[72] is another e�cient single query
planning algorithm which incorporates lazy collision checking [34].

3.2 Trajectory generation

While a path speci�es the points6 in space which should be reached during motion, a
trajectory speci�es the points and also the time at which those points should be reached
during motion. Thus, one can think of a trajectory as a path onto which time constraints
are imposed, for example in terms of velocity/acceleration at each point on the path.

Trajectories can be one- or multi-dimensional. A one-dimensional trajectory de�nes the
position for a one degree of freedom system and can be formally de�ned by a scalar function
of the form q = q(t). A multi-dimensional trajectory simultaneously de�nes the values of
multiple degrees of freedom and is formally represented as a vectorial function of time,
p = p(t). Multi-dimensional trajectories are the norm in robotics, since most robots have
more than one degree of freedom.

6Note that the points under consideration may be multi-dimensional.

11

CHAPTER 3. A THEORETICAL OVERVIEW

Trajectories are also categorized according to the motion type, which can be point-to-
point or multi-point. For the point-to-point case, the desired motion is de�ned by the initial
and �nal points of motion only. The multi-point case also considers a set of intermediate
points which must be reached during the motion.

It is fairly common to combine the tasks of path and trajectory generation. This is
almost always the case when obstacles are absent. The concepts developed for point-to-
point motion are usually extended to accommodate the case with intermediate points.

The fundamental theory of trajectory planning can be found in books on robotics like
[48] and [75]. An excellent book entirely devoted to trajectory planning is [32].

In this section, we take a brief look at a very speci�c aspect of trajectory planning, that
of converting a prespeci�ed multi-dimensional, multi-point geometric path into a trajectory.
This is because in the context of a framework for motion planning among obstacles, the
path is already generated by the path planner. What remains to be done is generating
intermediate points on the path and assigning time values for when those points must be
reached. We now consider these two actions separately.

3.2.1 Fitting a set of data points
When a suitable parametric representation of the path is not available, the path must be
considered as nothing more than an ordered sequence of points. To generate a suitable curve
through the available points, two types of �tting approaches can be distinguished [70, 50]:

Interpolation The curve passes exactly through all points for some value of the indepen-
dent variable

Approximation The curve need not exactly pass through all points, but passes through
their neighborhood within a prescribed tolerance

The approach of choice depends on the problem being solved. For example, approximation
is preferred to interpolation when the goal is to construct a curve reproducing the �shape�
of the data, avoiding fast oscillations between contiguous points (thus reducing the curva-
ture/acceleration along the trajectory) [32]. Approximation permits the reduction of the
speed/acceleration along the curve at the expense of lower precision. Approximation is also
the only option when the curve must �t a large number of points, but the free parameters
characterizing the curve are insu�cient for obtaining an exact interpolation. On the other
hand, when the tolerance of approximation is too high and precise motion control is neces-
sary, interpolation is preferred. See �gures 3.2 and 3.3 for an example of interpolation and
approximation over the same data points. In this section, we will consider interpolation
only, since for obstacle avoidance in cluttered workspaces, it is desirable to pass exactly
through the points generated by the path planner.

The interpolating/approximating curve can be determined either by global or local pro-
cedures. A global procedure considers all the points before generating the trajectory control
points. Therefore, if only some points of the path are subsequently modi�ed, the shape of
the entire curve changes and the entire trajectory needs to be recalculated. Local procedures
are based on local data (tangent vectors, curvature vectors etc.) for each pair of points.
These algorithms are computationally less expensive and the resulting curve is easier to
modify, but it becomes harder to achieve desired continuity constraints at each point.

The theoretically simplest approach to obtain an expression for a curve �tting N data
points is to use an (N − 1) order polynomial. However, this approach has severe disadvan-
tages

• It is not possible to enforce initial and �nal velocities

12

CHAPTER 3. A THEORETICAL OVERVIEW

Figure 3.2. Interpolation �tting [32] Figure 3.3. Approximation �tting [32]

• High order polynomials can exhibit oscillatory behavior, leading to unnatural trajec-
tories

• As the order of a polynomial increases, the numerical accuracy of their solutions
decreases

• Changing a single data point necessitates recalculation of the polynomial

Therefore, the preferred approach is to use a suitable number of low order polynomials with
desired continuity constraints at the path points. Generally, at least a cubic polynomial is
used since it allows the imposition of continuity on the velocity at each point. The following
situations occur commonly and have well-de�ned mathematical solutions

1. Arbitrary values of velocity are imposed at each data point

2. The velocity values at each data point are assigned according to a speci�c criterion

3. The acceleration at each data point is constrained to be continuous

4. Linear polynomials are used with parabolic blending at each data point

Further details of each method can be found in chapter 4 of [75]. The basic theory of using
splines for computing multipoint trajectories is described in chapter 4 of [32]. The use
of algebraic and trigonometric splines is further discussed in [81]. Methods of generating
smooth, constrained and time optimal trajectories using splines are presented in [44, 46, 47].

Regardless of the method employed, the ultimate outcome is a path with the desired
properties, represented in a parametric form.

3.2.2 Imposition of a timing law
Trajectories generally do not consider system dynamics. Hence, given a geometric path
p = p(u), the trajectory is completely de�ned when the timing law u = u(t) is provided.
This timing law is speci�ed such that the constraints on velocity and acceleration are met.
The timing law is e�ectively a reparametrization of the path, which modi�es the velocity
and acceleration vectors, see �gure 3.4. Chapter 9 of [32] provides great detail on the
imposition of timing laws.

The derivatives of the trajectory p̃(t) can be computed by the chain rule on p̃(t) =
(p ◦ u)(t)

13

CHAPTER 3. A THEORETICAL OVERVIEW

Figure 3.4. Composition of a generic 3D path p(u) and of a motion law u(t)

˙̃p(t) =
dp
du
u̇(t)

¨p̃(t) =
dp
du
ü(t) +

d2p
du2

u̇2(t) (3.5)

...

The actual speci�cation of the timing law depends on the problem being solved. A
generic motion law simply speci�es the relationship between t and u and the derivatives of
the parametric curve are calculated according to equation 3.5.

The simplest law is a proportional relation between t and u, i.e u = λt. When this is so,
the kth derivative of the parametric curve is simply scaled by a factor of λk. Thus,

p̃(1)(t) =
dp
du
λ

p̃(2)(t) =
d2p
du2

λ2 (3.6)

p̃(3)(t) =
d3p
du3

λ3

...

These relations can be used when the trajectory must satisfy constraints on velocity
(vmax), acceleration (amax), jerk (jmax) etc. In that case, ensuring that

λ = min

{
vmax

|p(1)(u)|max
,

√
amax

|p(2)(u)|max
, 3

√
jmax

|p(3)(u)|max
, . . .

}
(3.7)

will satisfy all constraints. However, constant scaling cannot guarantee initial and �nal
velocities to be zero, which is usually a requirement. In this case, some other continuous
motion law must be imposed. In case a local interpolation procedure is followed, each
segment can be reparametrized separately, instead of considering the same constant scaling
λ for the entire trajectory.

A �nal note on trajectory generation is that it might not be needed for every problem
being solved. Many problems often desire the robot to follow a speci�c path, with no
particular regard for the time of motion. In this case, the output of the path planner can
be splined and sampled at a desired resolution and a simple point-to-point motion can be
employed to follow the path. Details of one such motion controller are given in section 5.3.1.

14

CHAPTER 3. A THEORETICAL OVERVIEW

3.3 Motion control

Motion control determines the time history of the forces/torques to be developed by the
robot's actuators in order to guarantee execution of the commanded motion task, while
satisfying given transient and steady-state requirements. The solution of a robot motion
control problem has been conventionally split into two stages. The �rst stage is path or
trajectory planning where the robot dynamics are not considered. The second stage is
trajectory tracking, where the motion is controlled along the prede�ned trajectory. This
conventional split is mainly driven by the di�culties in dealing with complex, coupled ma-
nipulator dynamics at the trajectory planning stage. However, the simplicity resulting from
this division comes at the cost of e�ciently utilizing the robot actuator capacities. More
recently, the theory has been developed for optimally controlling robot motion constrained
by a pre-de�ned path. These techniques blur the distinction between trajectory planning
and trajectory tracking, but still fall into the category of motion control.

This section begins with a quick overview of control concepts speci�c to robotics and
then focuses on time optimal control along prespeci�ed paths. This is the most relevant
type of control in the context of a motion planning and control framework, which has a
dedicated path planning component for precalculating geometric paths. The discussion is
held in the context of kinematic chain manipulator type of robots, although the principles
can also be applied to the motion of mobile robots.

The control scheme for a robot manipulator can be decentralized or centralized. De-
centralized control regards the manipulator as formed by N independent systems (the N
degrees of freedom, or joints). Each joint axis is considered as a single-input/single-output
(SISO) system and the coupling e�ects between joints due to varying con�gurations during
motion are treated as disturbance inputs. Decentralized control is especially suitable for
manipulators with high reduction ratios in their joints. The presence of gears tends to
linearize the system dynamics and thus decouple the joints in view of reduction of non-
linearities. This is achieved at the cost of increased joint friction, elasticity and backlash,
that might limit the system performance. Centralized control takes into account the dy-
namic interaction e�ects between the joints. Individual joint axes are no longer considered
as isolated SISO systems. The computation of torque history at a given joint requires
knowledge of the time evolution of motion of all joints. Centralized control is used when
joints are driven with direct drives and/or high operational speeds. These factors give large
nonlinear coupling terms and the con�guration dependent inertia, Coriolis and centrifugal
forces become signi�cant. Considering them as disturbances induces large tracking errors.
Centralized algorithms are designed to take advantage of detailed knowledge of manipulator
dynamics in order to compensate for the nonlinear coupling terms of the model. In many
cases, the joints are equipped with torque sensors and then these measurements can be
conveniently utilized, avoiding online computation of the terms in the dynamic model.

The control of a robot manipulator can be in joint space or in operational (cartesian)
space. The control structure of both schemes employs closed loop feedback to improve
robustness to modeling errors and reduce the e�ects of disturbances. In the joint space
scheme, the motion requirements in the operational space are translated back into the
robot's con�guration space (via inverse kinematics) and the controller is designed to track
the joint space reference inputs. Quite often, the path/trajectory is speci�ed in joint space
and then this is the most natural choice for the control scheme. Joint space control is easier
to implement and works directly at the actuator level of the robot. The drawback lies in
the fact that the operational space variables tend to get controlled in an open loop fashion,
since the reference variables are in joint space, and not in operational space. Thus, any

15

CHAPTER 3. A THEORETICAL OVERVIEW

imprecision in the transformation of variables from operational to joint space7 will cause a
loss of accuracy in the operational space variables. Operational space control, on the other
hand, operates directly on the operational space variables. The inverse kinematics is then
embedded in the feedback control loop. Thus, this is a direct control for the position and
orientation of the end e�ector. In many cases though, this is only a potential advantage,
since the end e�ector pose is not directly measured but calculated from a measurement of the
joint space variables via forward kinematics. However, when interaction of the manipulator
with its environment is of concern, operational space control often becomes a necessity. For
example, when the end e�ector is in contact with elastic objects in the environment, it is
necessary to control the position as well as the contact forces and in such a case, operational
space control is more convenient.

The general control theory for robot manipulators is well developed and can be found
in any good book on robot control. [48] and [75] are good starting points.

We now turn our attention to the problem of motion control along prespeci�ed paths.
The most trivial case is when the path is available as a group of closely spaced points,
in which case a point-to-point controller can be used to move from one point to another,
under the assumption that the next setpoint is fed when the robot is close enough to the
current setpoint. This kind of motion can be manually tuned and a thorough analysis
of the manipulator dynamics can be neglected. However, any attempts at �nding a time
optimal motion along a speci�ed path must consider manipulator dynamics. This is because
motion along a path is governed by dynamic equations which are nonlinear. The geometric
properties of the path (curvature) will be re�ected in di�erent terms in dynamic equations
(inertial, centrifugal and Coriolis forces) during the motion.

Similar approaches for optimal control of a manipulator along a given path are presented
in [33, 74]. The authors propose a method to convert the limits on the joint torques to
limits on the acceleration along the path. By assuming that the acceleration undergoes
bang-bang control, a scheme was obtained to identify the switching points. Further, [74]
proved that the switching points on the part of the path where acceleration is saturated
are �nite in number. [69] proposed a method to simplify the computation of the switching
points. A method to improve the e�ciency of the path-following algorithm is given in [77].
A detailed discussion of how the algorithms have subsequently evolved can be found in [86].
The concept of a path velocity controller in addition to the ordinary robot controller for
improvement of path tracking is evaluated in [49].

3.4 Sensing and estimation

The algorithms running in the framework are driven by data. Hence, in order to do anything
meaningful, the framework must have access to data at all times. The most important data
is that which is obtained through sensors and provides information about the state of the
real world the robot is operating in.

In order to be useful, sensor data must be characterized by two properties

1. The data must be timely

2. The data must be accurate

An important interpretation of timeliness is that the most recent data available in the
framework must represent the physical signal values at the same point in time. In practice,

7The imprecision is usually due to uncertainty in of the robot's mechanical structure (construction
tolerance, lack of calibration, gear backlash, elasticity).

16

CHAPTER 3. A THEORETICAL OVERVIEW

there is always some latency in the data acquisition so that the most recent data available
indicates signal values at some past time instant. This latency needs to be minimized and
algorithm designers should be aware of the presence and consequences of the latency. The
latency results from factors internal to the framework as well as external sources. Internal
latency can be minimized by careful prioritization and scheduling of the data acquisition
code. External sources like bandwidth, network and sensor delays must be analyzed and
stochastically modeled.

Stochastic models and estimation are also needed to assure the accuracy of the data.
Mathematical models only approximate reality and even then, the data is prone to non-
deterministic disturbances. Finally, even sensors do not provide perfect and complete data
about a system. Either the desired quantities are not measurable, or they are corrupted
due to noise and sensor dynamics.

Accounting for data uncertainties in an algorithm makes it more complex than a similar
algorithm which trusts the data it is working with. In order to avoid implementing this
additional complexity in algorithms, it makes sense to have a single component in the
framework that gathers data and (if necessary) another component that �lters and analyzes
the data to provide values together with associated degrees of con�dence. The rest of the
system may then choose to modify its behavior based on the con�dence level of the data
values.

A lot of estimation theory has foundations in bayesian probability theory. An excellent
introduction to bayesian probability theory is given in [40, 38]. The Kalman �lter [57] is a
popular approach to applied estimation. An extremely good introduction to the concepts
of Kalman �ltering is given in Chapter 1 of [66]. A practical introduction with examples
and results is given in [82]. Theory and approaches to optimal state estimation are given
in [76].

Finally, the design of a generic real-time infrastructure for signal acquisition, generation
and processing is given in [42].

17

Chapter 4

Framework requirements

A framework is a design and an implementation that provides one possible solution in a
speci�c problem domain.[39] This chapter discusses the important requirements of a generic
framework for robot motion planning and control. It presents what is needed, without
details of how these needs should be satis�ed1.

Requirements can be split into design requirements and user requirements.

4.1 Design requirements

Design requirements describe functional objectives of the framework. They de�ne what
needs to be done for the framework to achieve its intended function. If a design requirement
is not met, the framework will not perform a function at all, or it will not perform it in the
desired way.

4.1.1 Must have
These requirements must be satis�ed, else the framework will not ful�l its primary purpose.

1. The framework must be capable of executing all the components needed to solve a
motion planning and control problem. The capability to execute a component does
not necessarily imply the need to do so. Depending on the problem requirements, it
should be possible to select the components to be executed. This enables the system
integrator to build a customized solution for the problem. Thus, the framework must
provide the possibility to run only a subset of all available components. Lack of this
possibility would lead to solutions that are an overkill for the selected problem class.
It would also impose an unnecessarily high threshold on the minimum computer re-
sources needed to run the framework. Running unnecessary components also increases
the complexity of the solution and thereby, the possibility of things going wrong.

2. The framework should be available in the form of a set of services. A combination of
these services would be typically used to solve a given motion planning and control
problem. For example, the framework can use its functional components to provide
services like collision free path planning within a scene, trajectory generation and mo-
tion control. These can be invoked one after another by one or more client programs
to move a robot among obstacles. A natural solution to this requirement is to have

1The how part comes in Chapter 5.

18

CHAPTER 4. FRAMEWORK REQUIREMENTS

at least one server component that accepts and responds to service requests. A con-
ceivable alternative to a server is to have a program that accepts runtime commands
and is executed once every time a problem instance is to be solved. This alternative
is inferior for a lot of reasons. To begin with, the program must acquire 'situational
awareness' of the robot, sensors, workspace, obstacles, user preferences, settings et
cetera at every invocation. Knowledge acquired from previous runs cannot be easily
maintained to optimize performance. Connecting multiple programs to this program
and performing time-bounded, error tolerant data exchange would be non-trivial. So-
lutions to these and other problems would eventually converge to a �server� paradigm.

3. Robust error handling is an important quality requirement. The framework should not
surprise the user by unexpected shutdowns due to errors. Therefore, error handling
considerations should be an integral part of the design. This avoids ad-hoc handling
of errors during the coding phase.

4. Extensibility is an essential requirement. It is unlikely that every single requirement
of the framework will be anticipated in advance. In order to accommodate unforeseen
requirements and user demands, it should be easy to extend the framework without
making substantial changes to the architecture2. The component interfaces evolve
over time and this process should not break the interaction with other components.

4.1.2 Good to have
These requirements are not critical in the sense that without them, the framework will still
meet its primary goals. However, meeting these requirements will result in a more usable
and elegant solution.

1. Communication with the framework server should be independant of the programming
language the client is written in, as well as the computer and operating system the
client program is executing on. The communication protocol should adhere to a well
established and ubiquitous standard. Ensuring this requirement makes it possible for
the framework to serve the broadest possible range of clients. It imposes minimum
constraints on how the clients should be written.

2. The framework should be network aware, so that clients need not be running on
the same physical computer as the framework. Network awareness also provides the
possibility of teleoperation of the robot.

3. Communication with the server component should be non-blocking. Non-blocking
means that a client should not have to issue a service request and wait inde�nitely for
a response from the server. Rather, the server should acknowledge the client request as
soon as it is received. The client may then send status requests to determine whether
previous requests were successfully completed.

4. A functional component within the framework must have the ability to execute dif-
ferent algorithms that provide the same functionality. This is because the algorithms
needed for each function di�er depending on the problem being solved. For example,
a motion control algorithm for an arc welding robot will di�er from that of a pick
and place robot. It should be possible to change the algorithm to be executed within
each component, without recompiling the framework. Such a structure ensures that

2�With proper design, features come cheaply.� - Dennis Ritchie

19

CHAPTER 4. FRAMEWORK REQUIREMENTS

the framework is not restricted to a prede�ned set of algorithms. The system integra-
tor can select or write an algorithm that suits his application the best. The desired
algorithm may be speci�ed at system startup. Also good to have is the ability to
switch during runtime between algorithms which were available at system start. The
ultimate in �exibility would be the possibility to write a completely new algorithm
and run it without restarting the system.

5. Each component of the framework should have a well-de�ned interface, inputs and
outputs, while the working of the component should be a blackbox. An important
implication of this is that it is not necessary to come up with a comprehensive, uniform
representation for scene �les, robot representations, obstacle de�nitions and so on. A
component can choose to de�ne its own representations of the objects it works with,
independantly of and opaque to other components. This saves a signi�cant amount
of work for the framework designer. Also, the components can then use third party
libraries with formats native to the particular library being used. Essentially, each
component should be complete in itself.

6. The functional components should be as loosely coupled as possible. Loose coupling
means that a component does not need to have knowledge about the identity, service
interfaces, locations or internal states of other components. For example, the com-
muncation between components is decoupled if the �sender� does not have to know
the identity of the �receiver� component[39]. Loose coupling makes it very easy to
make modi�cations to the framework architecture and to extend it in ways unforeseen
during the �rst design iteration.

4.1.3 Wish list
1. The framework itself shouldn't necessitate the use of a particular operating system or

hardware architecture. It is okay to specify minimum hardware resource requirements
in order to run the framework.

2. It should be possible to distribute execution of the framework components across
di�erent physical computers. This way, a resource intensive component can get its
own hardware and won't hinder the performance of other components.

3. The framework should o�er the possibility to execute components in real-time. Algo-
rithms which assume deterministic scheduling are simpler to design. Also, real-time
can be a non-negotiable requirement3 for the working of a component. For example, a
motion controller might not be able to achieve the desired performance in the presence
of scheduling jitter.

4. A reporter component should be present to stream status and data content from the
framework to interested client programs. This way, users can write programs that
'listen in' to what is going on inside the framework and extract the particular data of
interest. An example is a visualizer program that can graphically represent the robot
in its workspace, display planned paths and track the robot motion as it happens.

3The reason this requirement is not a 'Must have' is because code that needs realtime can be run on
separate processors with lower latency. It is more convenient, however, to run it within the framework itself.

20

CHAPTER 4. FRAMEWORK REQUIREMENTS

4.2 User requirements

User requirements describe what needs to be done to provide a good usage experience of
the framework. The framework can meet every functional requirement and still be di�cult
to use. De�ning and satisfying proper user requirements ensures that this is not so.

1. The framework should be as easy to use as possible. Complexity is the price for power,
but it should not be necessary for the user to thoroughly understand every detail of
the framework implementation before using it. The learning curve should be gentle.

2. The framework must accept commands both in cartesian and con�guration space.

3. At all times, the user must be able to examine the status of various components in
the framework to know exactly what is going on.

4. Parameters that a�ect performance of a component must be changeable while the
component is running. This makes performance tuning easier, faster and more conve-
nient.

5. Settings must be remembered. Thus, when a parameter is tuned to a correct value,
the value must be stored and used the next time the framework is started.

6. Programming libraries should be provided so that using the framework via client
programs is matter of calling the appropriate library function.

7. A visualizer client must be available with the framework so that the user can graphi-
cally inspect the output of a planning or motion process.

8. Usage and failure modes must be well documented so that the user knows exactly
what to expect. The framework must adhere to the rule of least surprise [71].

9. Errors must be reported verbosely with details of the fault and (if possible) hints on
how to rectify it.

10. Good documentation must be available so that the user can form a coherent mental
picture of the framework.

21

Chapter 5

Implementation

This chapter presents the framework as it is actually developed. It begins with a discussion
of the overall framework structure and then provides details of some individual components.

5.1 The framework structure

The framework is written in the C++ programming language1. This language was chosen
because of the wealth of available code and tools that could be directly used in the project.
Concerns regarding C++ overheads and performance are considered in [84], which presents
techniques for e�ective use of C++ and demonstrates that with a careful selection of lan-
guage features, current C++ implementations can match hand-written low-level code for
equivalent tasks.

The framework is implemented as a set of simultaneously running components, shown
in �gure 5.1.

This architecture was inspired by [43]. Orocos [41, 37] is used to implement the frame-
work structure. Orocos is a freely available, general purpose, modular, cross-platform soft-
ware which can be used for building frameworks intended for robot and machine control.
Features which made Orocos a compelling choice for building the framework were

1. Ready availability of the �software component� pattern2

2. Rich set of facilities available for safe and reliable inter-component communication

3. Possibility of scheduling components as realtime/non-realtime with di�ering priorities

4. Provision of an OS abstraction layer which minimizes operating system speci�c pro-
gramming code

5. Possibility of distributing components seamlessly across multiple computers

6. Excellent documentation and active community

Each component can independently execute an algorithm or state machine relevant to the
task it is supposed to perform. Interaction among components takes place via component
interfaces. A component interface is essentially a set of functions. The interface can be

1Strictly speaking, ISO/IEC 14882:2003 Programming Language C++
2A software pattern describes a proven way to solve a commonly occuring problem. Here, Orocos

provides a way to implement the software component pattern.

22

CHAPTER 5. IMPLEMENTATION

Client
SOAP

Server
Path

Planner
Trajectory

Generator
Sequencer

Interpolator

Controller

Estimator

e.g.: Kalman

Filter

Sensor Actuator

Command

Processor

Reporter
Exception

and Events

Processor

Parameter

Estimator

Free Motion

Exteral

Visualization

Program

e.g.: Peekabot

Robot

Description

(Plugin)

-Kinematics

-Dynamics

-Manufacturer API

Non Real-time Real-time

Robot

Figure 5.1. The Sarathi framework

extended to accommodate more functions as needed. The intention of the current imple-
mentation is not to de�ne exhaustive interfaces, but to have something that works and is
extensible for future needs, while retaining backward compatibility.

In Orocos terminology, a component is referred to as a 'TaskContext'. The terms 'com-
ponent' and 'TaskContext' will be used interchangeably in this report. The functions of
each TaskContext in �gure 5.1 will now be discussed before delving deeper into the anatomy
of a TaskContext.

5.1.1 The role of each component
• SOAP Server (Aperiodic): A TaskContext responsible for managing communication
with clients using SOAP messages. It also forwards command requests to the Com-
mand Processor. More details can be found in section 5.2.

• Command Processor (Periodic): A TaskContext which executes commands received
from the SOAP server (and optionally from other task contexts)

• Path Planner (Aperiodic): Upon receiving a goal position, the planner plans a path
from the current position to goal position. The result of a successful planning run is
a set of key con�gurations which must be successively attained in order to reach the
goal in a collision free manner. The path planner needs a scene description, which
describes the robot and the obstacles in its environment

• Trajectory Generator (Aperiodic): The path planner outputs a set of points, without
any consideration of the time at which each point is to be reached. The trajectory
generator imposes timing constraints which de�ne the time at which each point must

23

CHAPTER 5. IMPLEMENTATION

be reached. The output of the trajectory generator is a set of points, where each point
is associated with a time when it should be reached.

• Sequencer (Periodic): The Sequencer evaluates whether the generated trajectory is
being executed as expected, and makes corrections if it is not so. The evaluation
involves evaluation of application speci�c conditions and uses the output of the Tra-
jectory Generator and the realtime and non-realtime estimators

• Interpolator (Periodic): Generates a motion set-point every time it executes. Could
use di�erent methods like cubic splines, trapezoidal pro�ling etc.

• Sensor Value Estimator (Periodic): Could be a Kalman �lter or Luenberger observer.
Generates �ltered sensor readings for variables like robot position, velocity, accelera-
tion etc. The output of the estimator is a sensor reading with an estimated con�dence
level, which can be used by the other components.

• Parameter Estimator (Periodic): Used to estimate parameters of models that other
components rely on. Example could be identi�cation of dynamic system load

• Exception and Events Processor (Periodic): Used for fault management and a catch-
all for unhandled events in the system

• Free Motion (Aperiodic): Permits a total bypass of planning (and possibly motion
control), in case it is necessary. This is for raw, low level joint motions or for direct
invocations for robot manufacturer API

• Reporter (Periodic): The Reporter gathers data from other components in the system
and outputs it in a continuous stream. External programs can subscribe to this stream
to know the internal state of the system. An example could be a visualization program
that shows the planned path, current robot con�guration and so on

• Robot Description (Aperiodic): Each robot being used needs to be characterized by
kinodynamic constraints and several other attributes. Robot speci�c data enters the
system through this component. Among other things, it provides links to functions
in the robot manufacturer's API, which can be invoked for actual robot motion.

5.1.2 Anatomy of a component
�A component is a basic unit of functionality which executes one or more (real-time) pro-
grams in a single thread. The program can vary from a mere C function over a real-time
program script to a real-time hierarchical state machine. The focus is completely on thread-
safe time determinism. Meaning, that the system is free of priority-inversions, and all op-
erations are lock-free (also data sharing and other forms of communication such as events
and commands). Real-time components can communicate with non real-time components
(and vice verse) transparently.� [79]

The following description of a component is mostly verbatim from various parts of [79].
A component can be interfaced in �ve distinct ways

1. Data Flow Ports: are thread safe data transport mechanisms to communicate bu�ered
and unbu�ered data between components.

2. Properties: are run-time modi�able parameters, stored in XML �les. For example:
"KinematicAlgorithm", "ControlParameter", "HomingPosition"

24

CHAPTER 5. IMPLEMENTATION

3. Methods: are callable by other components to 'calculate' a result immediately, just
like a 'C' function. They are run in the thread of the calling component. For example:
"getTrackingError()", "openGripper()", "writeData("�lename")", "isMoving()"

4. Commands: are 'sent' by other components to instruct the receiver to 'reach a goal'.
For example: "moveTo(pos, velocity)", "home()",... A command is executed in the
thread of the called component and therefore cannot, in general, be executed instanta-
neously3, since the calling component is using the processor at the time of invocation.
Hence the caller should not block and wait for its completion. But the Command ob-
ject o�ers all functionalities to let the caller know about the progress in the execution
of the command.

5. Events: allows functions to be executed when a change in the system occurs. For
example: "Position Reached", "Emergency Stop", "Object Grasped"

Besides de�ning the above component communication mechanisms, Orocos allows writing
hierarchical state machines which use these primitives. This is the Orocos way of de�ning
application speci�c logic. State machines can be (un-)loaded at run-time in any component.

The schematic interface of a component is represented in �gures 5.2 and 5.3.

Figure 5.2. Component schematic Figure 5.3. Component interface

The task speci�c code of a component is written in 'Hook' functions. A hook function is
called whenever a speci�c function in the component API is invoked. Some hooks are called
whenever a component changes its state. The runtime states of a component are shown in
�gure 5.4, the error states are shown in 5.5.

In its simplest possible form, a periodic component executes in the following 3 steps

1. the startHook() function is called once whenever the component �rst starts executing

2. the updateHook() function is called at each successive period

3. the stopHook() function is called once just before the component stops executing

5.1.3 Intercomponent communication
Communication between components occurs through the �ve interfacing facilities described
in section 5.1.2. Components need to be connected before they can use each other's interface.
The connection can be uni- or bi-directional. In a uni-directional connection, only one

3On a uniprocessor system.

25

CHAPTER 5. IMPLEMENTATION

Figure 5.4. Component runtime states Figure 5.5. Component error states

component can use the interface of the other, while in a bi-directional connection, both
components can use each other's interfaces. See �gure 5.6. This allows to build strictly
hierarchical topological networks as well as complete �at or circular networks or any kind
of mixed network.

Realtime

Task A

Realtime

Task B

Non-Realtime

Task C

Thread A Thread B

Thread C

A.connectPeers(&B)

C.addPeers(&B)

Events,

Methods,

Commands,

...

In both directions

Events,

Methods,

Commands,

...

from B

Figure 5.6. Connecting components[79]

Connected components are called 'Peers' since there is no �xed hierarchy. The peer
connection graph can be traversed at arbitrary depth i.e. a component can access its peer's
peers.

Components can exchange data using the data�ow ports. The direction of data �ow is
imposed by the read/write nature of the ports. Figure 5.7 shows some possible topologies.
Four components, "A", "B", "C" and "D" have each a port "MyData" and a port "My-
Data2". The example demonstrates that connections are always made from writer (sender)
to reader (receiver).

26

CHAPTER 5. IMPLEMENTATION

Figure 5.7. Example data�ow networks[79]

5.1.4 Plugin management
The functionality of a component is provided by the algorithm or state machine it executes.
There can be di�erent algorithms (or state machines) for the same task, depending on the
speci�c problem being solved. For example, the motion controller component would use
a di�erent algorithm if a pick-and-place type of problem is replaced with an arc-welding
problem.

The use of plugins separates the interface from engine and allows a component to execute
a user selected algorithm at runtime. Plugins have been implemented using the Qt plugin
management framework [6].

When a component starts, the following sequence is executed

1. Read con�guration �le to know which plugin is to be loaded

2. Search standard locations for desired plugin

3. If plugin is found and successfully loaded, enter running state, else enter error states

Once a plugin is successfully loaded, the entire functionality of the component is handled
by the plugin. This is done by making sure that every component interface function merely
calls the equivalent function in the plugin.

Plugins are good because they enable system integrators to extend the framework in
extremely speci�c ways, without touching the framework code.

5.2 The SOAP server component

The SOAP server component provides the interface via which client programs access the
services provided by the framework. This is accomplished by using the gSOAP [24] library

27

CHAPTER 5. IMPLEMENTATION

which implements the SOAP [35] protocol.
SOAP is a simple XML-based protocol to let applications exchange information over

HTTP. The protocol is platform and programming language independent and thus there
are no restrictions on how the client programs need to be coded. Network awareness is
inherited from the HTTP protocol. Another protocol which meets the requirements is
XML RPC [23]. However, SOAP was chosen over XML-RPC because of the availability
of a good library implementation in the form of gSOAP. CORBA[3] and ICE[7] are two
additional methods to invoke functions and exchange data across computers, but they were
not considered because they exchange binary data and need a mapping to the programming
language being used. SOAP, on the other hand, uses plain text and hence no language
speci�c mappings are needed.

�The gSOAP toolkit is an open source C and C++ software development toolkit for
SOAP/WSDL and XML Web services and C/C++ XML data binding applications that
bene�t from automatic XML serialization.� [5]. In simpler terms, gSOAP permits a client
program to call a C++ function which then automatically calls an equivalent C++ function
in a server program. The server program can be running on another computer and gSOAP
uses the SOAP protocol for communicating the function arguments and response data over
the network. gSOAP also makes it possible to create a server object which can listen on a
speci�c port number and act on received requests. Thus, the entire protocol and commu-
nication e�ort is handled transparently and the developer becomes free to concentrate on
what should be communicated, instead of how it should be communicated.

When the framework starts, the SOAP server component is started and it starts listening
on a speci�c port for incoming requests. When a request is received, the server either
ful�lls the request immediately or dispatches it to the Command Processor component
for subsequent execution. A request is executed immediately if it can be serviced in a
deterministic and short time interval. For example, a request for data already available in
other parts of the framework is serviced immediately. Examples include requests for the
planned path, the current robot position, the status of the various components et cetera.
On the other hand, requests that could take a large or indeterminate amount of time are
dispatched to the Command Processor component where they can be scheduled for execution
in separate threads. Examples include requests for planning a path, moving the robot to a
speci�c position et cetera. This model of servicing requests ensures that the clients always
get an immediate response either in form of real response data or an acknowledgment of
their request. Thus, the non-blocking communications requirement is satis�ed.

The networking code in the component is handled using the cross-platform Qt Network
module [18]. This ensures platform independence of the networking code.

5.3 The motion control component

The motion control component is responsible for moving the robot along the planned path.
The motion control algorithm is implemented in a plugin which is loaded when the compo-
nent is started. The component interface is shown in table 5.1.

Since the motion controller moves the robot along a speci�c path, the interface contains
functions to set and erase this path. Additionally, the motion controller can use the pre-
ferredPathSpace attribute to provide a hint about whether it prefers a path speci�ed in
con�guration or cartesian space. The positionTolerance attribute speci�es the tolerance
within which the desired end position is to be achieved. The exact interpretation of its
value is dependent on the motion control algorithm being used.

28

CHAPTER 5. IMPLEMENTATION

Commands Methods Properties/Attributes

execPath setPath status

erasePath stop pathSpace

init preferredPathSpace

reset positionTolerance

Table 5.1. Motion Control Component interface

The motion control component is initialized when the framework starts. For all subse-
quent motions, the planned path is transferred to the component using the setPath method.
Once the path is properly set, the execPath command is invoked in order to move the robot.
The interface functions are simple wrappers around relevant plugin functions and there are
no hard and fast rules de�ning exactly what happens when an interface function is called.
The plugin author has total freedom to de�ne the system behavior.

5.3.1 The time-invariant motion controller
At the time of this writing, exactly one motion control plugin has been implemented, which
will be documented in this subsection.

Background

The researchers at KTH/CVAP needed to move a KUKA KR5 Sixx R850 industrial robot
arm [8] during their experiments. Accuracy of positioning was more important than the
velocity. Also, the exact path between point to point motion was unimportant as long as
there was no collision with the obstacles in the environment. The manufacturer provided
an API function to move each joint to a desired position, at a desired velocity. Trapezoidal
velocity pro�ling was employed between point-to-point motion. The path followed while
moving from one point to another was determined by the proprietary robot motion con-
troller and not controllable by the user. The robot would be sent motion commands over
a non-dedicated network. Due to this and the proprietary processing involved in the robot
controller, there would be stochastic delays in the execution of commands.

Under these operating conditions, the requirement was for a motion controller that could
guide the robot's end e�ector along a speci�ed path in cartesian space.

Solution

The problem constrains the path of the robot, not its trajectory. Thus, there is no require-
ment of when each point on the path is to be attained. Since timing constraints are not
imposed, the motion controller is made time invariant. This means that the value of the
control signal does not depend directly on time.

The path to be followed is an ordered set of points. These points are usually generated by
the path planner and no assumptions can be made about the distance distribution between
the points. The motion controller �ts a cubic spline[54] through the points in order to get a
C2 curve that passes through every point in the path. Then, points are uniformly sampled
along this spline and used as successive set-points for the robot motion. A point on the path
is generally multi-dimensional and the program GNU Spline, which is part of the plotutils
package [4] is used to spline the path.

Once the path is splined, algorithm 1 is periodically invoked for motion control.

29

CHAPTER 5. IMPLEMENTATION

Algorithm 1 The time invariant motion controller

1: Get current position
2: if (Moving for �rst time) then
3: Assert that gripper has not moved
4: goto next point on splined path
5: end if

6: Assert robot is not stuck in same position
7: if (At last point on splined path) then
8: Exit from current iteration
9: end if

10: if (Close enough to point being approached) then
11: Assert that gripper has not moved
12: goto next point on splined path
13: end if

Thus, the motion controller moves the robot along the points on the splined path. The
number of points on the path can be controlled, to achieve a su�cient point density so
that the resulting motion is collision-free and smooth. The accuracy of the motion i.e. how
closely the robot tracks the desired path can be tuned by de�ning how close the robot
should get to a point before it is given the next set-point. This �close enough� distance can
be a dynamically calculated quantity based on the current robot velocity.

If there is a requirement for constant velocity, the theoretically latest position at which
the next set-point should be fed is shown in �gure 5.8. Since the robot manufacturer's
controller performs a trapezoidal velocity pro�ling, the next set-point should be provided
before the robot starts decelerating. The velocity and point density is tuned such that the
robot is close enough to the targeted set-point by the time the theoretically latest position
is reached. This e�ectively gives a trapezoidal velocity pro�le over the entire path being
followed.

Fe
ed

 se
t-p

oin
t 2

Fe
ed

 se
t-p

oin
t 3

Fe
ed

 en
d p

oin
t

se
t-p

oin
t 3

se
t-p

oin
t 2

se
t-p

oin
t 1

sta
rt

en
d

Velocity

Figure 5.8. Specifying set-points

5.4 The path planner component

The path planner component is responsible for generating a collision free motion path for
the robot. The input to the planner is the geometry of the robot and obstacles together with
an ordered set of positions which the robot must reach while in motion. Generally, these
positions are the start and end points of the motion, but can sometimes include speci�c

30

CHAPTER 5. IMPLEMENTATION

positions needed to be reached along the way to the end point. The planner then generates
a path that connects these positions with collision free segments.

The interface of the planner component is shown in table 5.2.

Commands Methods Properties/Attributes

planPath setKeyPoints plannerStatus

getPath planningStatus

setPlannerFile plannerFile

setSpaceType spaceType

Table 5.2. Planner Component interface

The setKeyPoints method is used to tell the planner the positions along which planning is to
be done. getPath returns the planned path. setPlannerFile passes a �le to the planner which
describes the environment the robot is operating in. The environment consists of the robot,
the obstacles and their geometries in space. setSpaceType is used to de�ne whether the key
points provided are in con�guration or cartesian space. Once the methods are invoked to
describe the planning problem, the planPath command can be used to actually solve the
problem. The planningStatus attribute indicates the result of the planning process.

The actual work of planning is done by a planner plugin which is loaded by the compo-
nent at startup. All the component interface functions call the relevant plugin methods.

5.4.1 The MPK planner plugin
At the time of this writing, exactly one path planning plugin has been implemented, which
will be documented in this subsection.

How the planner was chosen

There is a fair amount of code already written for motion planning. When choosing a
planning algorithm, the top two concerns were

1. The ease with which the planner could handle the problem of planning for the robots
we intend to use

2. The availability of the algorithm in the form of a ready to use library or source code

The �rst application of this framework would be for moving industrial robotic arms at
KTH/CVAP. These are �xed base kinematic chains. The algorithm should be able to work
with these types of robots. Next, it is easier to integrate the planner into the framework
if it is available as a well-documented software library. This saves the e�ort of reading a
reference paper and coding the algorithm from scratch. With this in mind, a survey of
available software was made and some potential candidates were identi�ed.

The Motion Strategy Library (MSL)[12] provides a number of planning algorithms.
However, it is dated with respect to the versions of software it is written in. The last
release was made in 2003 for Redhat Linux 8.0. It was di�cult to even compile it on a
recent distribution of Linux. Also, it doesn't work on Mac, thus compromising on the
cross-platform requirement.

31

CHAPTER 5. IMPLEMENTATION

The Motion Planning Kernel (MPK)[10] from Simon-Fraser university is another frame-
work for motion planning algorithms. However, it works only on Microsoft windows, com-
promising the cross-platform goal.

OOPSMP[13] from the Kavraki Lab at Rice university is a framework for research on
motion planning algorithms. It is directed more towards mobile robotics and at the time of
evaluation did not support an easy way to work with robotic arms.

OpenRAVE[15] provides a number of path planners and works well with robotic arms.
However, OpenRAVE is much more than mere motion planning and considerable other
software infrastructure would be needed in order to use the OpenRAVE planners.

The Motion Planning Kit (MPK)[11] from Stanford is a C++ motion planning library
with minimal software dependencies. It works on Microsoft Windows, Linux and MacOS.

Ultimately, the Motion Planning Kit was chosen for the following pragmatic reasons

1. It was capable of solving motion planning problems for one or more industrial robot
arms

2. De�ning robot models and obstacles was extremely easy

3. It understood the concept of gripper degrees of freedom and ignored them for motion
planning

4. It came with well-written examples and very good facilities for visualization of gener-
ated paths

5. The documentation was excellent. The licensing was open.

6. The author is extremely responsive and readily replied to all queries

The next section describes the MPK planner in more detail and how it is used within the
planner component.

The MPK algorithm

The Motion Planning Kit (MPK) is a C++ library and toolkit for motion planning for one
or more robots. It is a Single Query Bi-directional Probabilistic Roadmap Planner with
Lazy Collision Checking (SBL). Details of the SBL algorithm can be found in [72]. MPK
uses a fast dynamic collision checker that guarantees not to miss any collisions. Details of
the collision checking algorithm can be found in [73].

MPK works in con�guration space. Robots and obstacles can be de�ned and added to
the planner without recompiling the planner code. Both the robot as well as the obstacle
geometries are de�ned as solid models in the Open Inventor[14] format. More information
about working with Open Inventor can be found in [83]. The complete description of the
robots and obstacles (as against a description of just their geometries) is in a MPK speci�c
format derived from the Open Inventor format. De�ning new robot models is described in
[28], while [29] describes how new scenes are created.

MPK accepts any number of con�guration space positions of the robot(s) and plans a
collision free path connecting them in the given scene. The output of the algorithm is an
ordered set of points in the robot's con�guration space which describes the generated path.
The generated path is based on randomly sampled points in space, and so the path may
need to be smoothed. For this purpose, MPK includes a path smoothing function.

In case the user chooses to specify the robot positions in cartesian space, an inverse
kinematics solver needs to be called in order to convert the cartesian point to con�guration
space.

32

CHAPTER 5. IMPLEMENTATION

5.5 The robot component

The framework needs a consistent interface to the robot being controlled. This consistency
is made possible by the robot component which provides a uniform interface for use by the
other system components. Thus, the task of the robot component is to abstract away the
di�erences between di�erent robots controlled by the framework. The component does this
by using plugins. The component-plugin interface is uniform and well-de�ned, whereas the
plugin-robot interface can be highly tuned to the robot being controlled.

The robot component interface is shown in table 5.3.

Commands Methods Properties/Attributes

gotoPosition stop robotDOF

getPosition gripperDOF

ikSolver status

fkSolver hostName

hostPort

Table 5.3. Robot component interface

The gotoPosition command can be used to move the robot to a speci�ed position, while
the getPosition command returns the current robot position. Both these functions work
with values in con�guration as well as cartesian space. the ikSolver and fkSolver functions
are used for solving inverse and forward kinematics problems respectively. robotDOF and
gripperDOF indicate the degrees of freedom in the robot and the gripper respectively. These
values may be needed by other components for various reasons. hostName and hostPort are
used to hold the host name and port number of the server controlling the robot is running
on. Typically, this is the software provided by the robot manufacturer.

5.5.1 The KUKA KR5 Sixx R850 robot plugin
This plugin was developed for controlling the KUKA KR 5 sixx R850 robotic arm [8] at
KTH/CVAP vision laboratory. The robot arm has a Schunk dexterous hand [21] attachment
for grasping tasks. The robot is used for grasping objects kept on a table. It is required
that the robot must not knock over other objects when reaching for the desired object.

The hand is a 7 degree of freedom system (DOF), while the robot arm has 6 DOF. The
plugin views the arm-with-hand as a 13 degree of freedom kinematic chain. The �rst 3
degrees of freedom are used for positioning in cartesian space, the next 3 degrees of freedom
are used for orientation in cartesian space. The last 7 DOF are considered passive and are
not used for path planning purposes. This is in order to prevent generating a path where the
�nger joints have to be moved in order to get around an obstacle. Moving the �nger joints
will likely cause the hand to drop the object it has grasped and is not desirable. Although
the last 7 DOF are not changed for path planning, knowing their values is necessary in
order to know the pose of the hand at the instant when planning is to be done. Knowledge
of the hand pose is necessary to avoid collision with obstacles in that particular pose.

The robot and the hand are controlled via two separate servers which abstract the exact
mechanisms used to control them. The plugin therefore interacts with these servers in order
to perform operations on the robot/hand. The servers can execute on separate computers
and the plugin communicates with them over the network. Communication takes place

33

CHAPTER 5. IMPLEMENTATION

over the User Datagram Protocol (UDP) instead of the more common Transport Control
Protocol (TCP). The reason is that UDP is a connectionless protocol without the overhead
of detecting and re-transmitting lost packets. The packets can be self-contained and so
only the latest packet received is relevant. Experiments and further details regarding the
advantages of UDP over TCP are given in [67] and [78].

5.6 The libhyperpoint library

The components of the framework are complete in themselves. Each component can have its
own representation of the data it works with. However, when it comes to data exchange be-
tween the components, or with clients, it helps to de�ne standard data types for exchanging
the most commonly used data. In absence of a standard data type, components exchanging
data would have to know each others data types. Therefore, the concept of loose coupling
among components would be lost.

The most commonly exchanged data between the framework components and between
the framework and clients is a point or a set of points. In this context, a point can be in
n-dimensional real space, Rn. For example, the con�guration space of an n DOF robot is
in Rn, while a point in cartesian space is in R6. Therefore, a data type is needed to hold an
arbitrary dimensioned point. Let us denote an arbitrary dimensioned point as a hyperpoint.
To denote a set of hyperpoints a data type is needed to hold an arbitrary dimensioned array
of hyperpoints.

Hence, a library (called libhyperpoint) was created which de�nes the hyperpoint and
hyperarray classes. Each class has methods which facilitate operations on the data type.
The API documentation of libhyperpoint can be found at [9].

5.7 The libsarathi client library

Libsarathi is a C++ library which can be used for communication with the Sarathi frame-
work. The library de�nes a serverProxy class which can be instantiated by client programs.
Methods of this class can then be invoked in order to use the services o�ered by the frame-
work. The library uses gSOAP to handle the communication with the server. Additionally,
it needs the supporting library, libhyperpoint, in order to use the hyperpoint and hyperarray
data types.

The library functions throw exceptions when they detect error conditions. Errors re-
ported can be communication errors as well as errors in the framework when executing
client requests. The exception object contains information about the cause of the error as
well as hints on correcting the error.

The library API documentation is described in [30], while [31] provides a usage guide
and examples of how to use the library.

34

Chapter 6

Testing

After a software is designed, it must be tested to verify that it meets the design requirements.
This chapter presents how the framework was tested.

The framework exists as a set of services and testing the framework involves testing
of each individual service, as well as how the services interact with each other to solve
a problem. The services are designed to be driven by client programs and hence, client
programs have to be written to emulate real-world use cases. Practically, the functionalities
of the framework and the clients evolve simultaneously. As soon as a function is added to
the framework, the client is updated so that the new function can be tested.

This chapter now discusses the test tools that were written, followed by the testing
methodology employed. Finally, a real use case is presented to show one way the framework
is used in reality.

6.1 Test tools

Two client programs were written in order to interact with the framework. These client
programs are useful for three main reasons

1. The clients generate meaningful testing data

2. They can be used for systematic testing of each service o�ered by the framework

3. They are good examples of using the framework and the libsarathi library (for future
users)

The client programs are named 'Parth' and 'APIease' (pronounced: appease). Parth is
useful for visualizing scenes and generating test data. APIease is useful for thorough testing
of framework services. Both clients use the libsarathi library.

6.1.1 Parth
Parth is a software client that can display the scene �le used by the MPK path planner. It
displays a 3D view of the robot as well as its operating environment, including the obstacles.
In addition to display, Parth also allows the user to interact with the virtual robot on the
screen. The user can move the robot to any position in the workspace and collisions with
obstacles, if any, are immediately shown. The current position of the robot is continuously
displayed. Therefore, the user can readily obtain coordinates of valid robot positions in the
workspace. This is useful to have because a large number of robot positions are needed for

35

CHAPTER 6. TESTING

testing the framework. Figure 6.1 shows a screenshot of Parth with the KUKA KR 5 Sixx
R850 robot inside a cage obstacle.

Figure 6.1. Parth screenshot

Parth can also store user-chosen positions and send them to the framework as keypoints
along which the path should be planned. The path planned by the framework can be
retrieved and displayed in the 3D view. Further, the robot model can be animated to show
how the robot would follow the retrieved path. Thus, the user can do a complete simulation
of path planning and motion before the physical robot is moved. Parth can also send motion
commands to the robot via the framework, and synchronize the current position of the robot
model to the actual position of the real robot.

Parth therefore becomes a complete test bed for tasks like testing new robot models,
testing new scenes with a variety of obstacles, planning paths among obstacles, moving the
robot along planned paths and so on. It can also be used as a GUI to observe the framework
functioning while another client program is using the framework services. The 3D visual
representation makes it intuitive and obvious to understand what is going on.

6.1.2 APIease
APIease is a software client geared towards testing each function of the interface which the
framework uses to communicate with clients. If a function exists in the interface, APIease
includes the facility to call it. A screenshot of APIease is shown in �gure 6.2.

Clients like Parth are useful for solving speci�c problems, not for stress testing the
framework interface. This is because they sanitize their inputs, call the correct functions
with their proper arguments and in general, follow all the rules of correctly operating the
interface. They do not deliberately try to break the framework's way of operation by giving
bad inputs.

APIease can be used to test the robustness of the framework functions and client com-
munication. This is because it provides facilities to make raw function calls and examine
the results. So it is very easy to provide unexpected inputs. With APIease one can

36

CHAPTER 6. TESTING

Figure 6.2. APIease screenshot

1. Call a function with bad or invalid arguments and observe what happens

2. Call functions in improper sequence. For example, send a Move command followed
by a Plan Path command

3. Call random functions while the framework is busy processing previous requests

4. View intermediate results in a function sequence, since each function is called step-
by-step

5. Use invalid communication parameters or simulate communication faults like timeouts
and delays

6. Call functions when their assumed pre-conditions are false. For example, calling a plan
path command without setting the scene �le or sending a Move command without
�rst planning a path

Ultimately any interaction of a client with the framework can be broken down into a se-
quence of function calls together with speci�c arguments. This sequence can be executed
using APIease and so APIease can be used for simulating test cases with any client. Sim-
ilarly, conditions from bug reports can be duplicated, by sending the function(argument)
sequences that cause the bug. This aids in tracking down and �xing bugs.

APIease is therefore a valuable tool not just for the framework developers, but also for
users trying out new ideas.

37

CHAPTER 6. TESTING

6.2 Testing methodology

Typical use of the framework consists of moving the robot along a speci�ed set of positions,
in the presence of obstacles. The process of doing this can be divided into a set of discrete
operations. These operations are

1. Initiating communication with the framework

2. Describing the scene to the path planner (scene includes description of the robot,
obstacles, their geometries and relative positions)

3. Setting the key positions along which path planning is to be done

4. Planning the path

5. Moving the robot along the planned path

The testing methodology employed primarily focuses on these discrete operations, in the
order in which they are executed.

SOAP server testing consists of verifying three aspects: Network capabilities, data trans-
mission �delity and error reporting. gSOAP permits the creation of a TCP/IP network
server, which must be tested with connections from the local machine as well as network
machines. The behavior must be de�ned for cases of dropped connections, simultaneous
connections, corrupted data packets, latencies in communication and so on. Data trans-
mission �delity involves transferring all the data types used by the framework and in the
framework-client exchange in order to verify that there is no loss of precision during commu-
nication. Finally, networking errors as well as errors in the framework functioning must be
reported back to the clients, with additional error data wherever possible. gSOAP provides
a built-in mechanism to report these errors and hence a custom error reporting scheme was
not necessary. However, testing of this feature involves generating errors on the server side
and assuring that the messages sent back to the clients would be su�ciently informative to
track down the error cause.

Testing of the path planner component begins by ensuring that the path planning plugin
is located and loaded correctly when the component starts. The necessary condition for
correct planner operation is the presence of a valid scene �le. A valid scene �le contains
a syntactically correct description of the geometries and positions of the robot as well as
the obstacles present in its workspace. Once the planner is informed of the scene, the
description of the planning problem is completed by providing valid start and end positions
for the robot's motion. A valid position is any position that can be physically reached
by the robot in its environment. An example of an invalid position is where the robot is
colliding with an obstacle, or a physically unrealizable con�guration of the robot joints.
The description of the scene and positions involves a lot of numbers and it is not feasible to
enter them manually 1. This is were the testing tool, Parth, comes in. Parth can be used
for parsing and visually representing the scene �le. Random collision-free con�gurations of
the robot can be generated which can then be used as intermediate points for describing the
desired path. These are sent to the framework together with the name of the scene �le. In
this way, it becomes easy to generate a lot of inputs for testing the path planner. After the
path is planned, Parth can get it from the framework and display it visually. The correct
working of the planner can thus be veri�ed.

What kind of obstacles should be used during testing? Some scenes for testing of PRM
planners are described in [51, 52]. The cage is a complex environment which puts heavy load

1In real use, this data will come from the client.

38

CHAPTER 6. TESTING

on the collision checker. An example of the Powercube robot arm within a cage obstacle is
shown in �gure 6.3. Another approach is simply to look at the scene and manually model
the environment in which the robot will operate. Modeling can be done with a tool like
Blender, after which the scene can be converted into a format suitable for the planner.
Figure 6.4 shows the KUKA robot arm within a simple scene where obstacles have been
represented with a cylindrical and a cubical bounding boxes.

Figure 6.3. A cage obstacle Figure 6.4. Obstacle representation with geometric bounding boxes

Using a pair of cameras, it is also possible to generate an automatic representation of
the scene. Another option is to use a laser scanner instead of a camera for generating scene
data.

The motion controller component heavily depends on the proper function of the sensor
and robot components. The sensor component is responsible for providing current val-
ues of the robot's position, velocity and acceleration. It does this by querying the robot
component, which provides an abstraction to the robot being used.

The functions provided by the robot component are tested using APIease. The process
involves setting the target values of joint parameters like positions, velocities and acceler-
ations, then reading them back while the robot is moving. Another important action is
to check and set the limits of the joint parameters. In the framework, the joint limits are
used to scale the joint parameters within [0, 1] with 0 representing the lower limit and 1
representing the upper limit. This ensures that values never exceed the limits. The cor-
rectness of the inverse and forward kinematics solvers is then tested since these functions
are invoked whenever the representation of a parameter inside the framework changes from
con�guration to cartesian space or vice-versa.

Position data from the sensor component was tested by using Parth to query the cur-
rent position and update the on-screen model. A simple visual check is often enough to
determine if the values are incorrect. For �ner veri�cation, the joint positions are incre-
mented/decremented by known, small values and sensor values are checked to see if they
re�ect the changes.

The �rst test of the motion controller was to see if the robot moved. After the robot
seemed to be following the generated path, two motion parameters were tuned. The �rst
parameter a�ects how accurately the robot tracks the path, which the second parameter
a�ects the smoothness of the motion. Smoothness in this context refers to the decrease in
velocity as the robot approaches the current position setpoint. There is a velocity decrease
as the setpoint is approached because the position controller typically uses trapezoidal
velocity pro�ling with a velocities set to zero at the motion endpoints. Therefore, the time

39

CHAPTER 6. TESTING

invariant motion controller feeds the next position setpoint before the downward ramp in
the trapezoidal velocity pro�le begins. If the deceleration is low, the ramp down begins
earlier and vice versa. A steeper value of the ramp gives better path tracking accuracy,
since the robot can get quite close to the position setpoint before it starts moving to the
next setpoint. Finally, communication with the robot was disrupted while the robot is
moving. This is intended to verify that the motion controller can respond to abnormal
conditions and bring itself into a well-de�ned error state. The presence of an error state
brings the robot to a stop.

One more test at the framework level involves generating various errors as the framework
is in operation and ensuring that none of the components block. Components should be
responsive to new commands under all circumstances.

6.3 An example use case

This section describes how the Sarathi framework is used at the Computer Vision and Active
Perception (CVAP) laboratory at KTH.

KUKA robot

Schunk Hand

KUKA

Controller Armserver

Legolas

Handserver

Gollum

PACO

Head

Sarathi

APIease

Parth

User programs

[Libsarathi]

User's computer

Figure 6.5. Use case layout

KUKA robot is a KUKA KR5 Sixx R850 6dof robot arm

Schunk hand is the Schunk SDH three �ngered dexterous hand attached to the robot end
e�ector

40

CHAPTER 6. TESTING

KUKA Controller is the proprietary robot controller from KUKA Gmbh (the robot man-
ufacturer)

Hand server is an interface to the Schunk hand, which is developed in-house

Armserver is an interface to the KUKA arm, which is developed in-house

PACO Head is a robotic head containing 4 cameras which is used to observe the robot's
workspace

The KUKA controller, armserver, handserver, PACO head, Sarathi and user programs
execute on di�erent computers connected to the lab network. Sarathi runs on a di�erent
computer not because of computational load considerations but to avoid disrupting the
software setup of the existing lab computers.

The robot+hand is used to grasp various objects in the robot workspace. Sarathi is
used for moving the robot towards the desired objects without knocking over other objects,
hitting the table on which the objects are kept or moving into walls. Therefore, the objects
with which collisions are to be avoided are considered to be obstacles. The PACO head is
used to observe the scene and software is available to generate three dimensional models of
the objects in the workspace. A script has been created to use the PACO head for generating
a scene �le appropriate for Sarathi to use. A plugin has been created which represents the
robot arm and hand as a 13 DOF kinematic chain, and interacts with the hand and arm
servers. Thus, although two di�erent interfaces running on two di�erent computers are used
for actual communication, a uniform interface is presented by the robot component to the
rest of the Sarathi framework.

During operation, the KUKA controller, handserver, armserver and PACO head are
initialized. Then, Sarathi is started with the MPK path planning plugin, the time invariant
motion controller plugin and the correct robot plugin. Parth and APIease may be running
for monitoring purposes, but their execution is optional.

The user programs use libsarathi to interact with the Sarathi server. Typically, the
user program uses the PACO head to generate a scene �le, then sends a robot destination
position to Sarathi. The SOAP server component receives the request and passes it on the
Command Processor. The command processor programs the path planner with the current
and destination positions, as well as the scene �le. The path generated by the planner is
then sent to the motion controller, which moves the robot along the path. At all times, the
user program can query the status of the framework components. If any errors occur, an
error report, including error data, is send back to the client.

Thus, once Sarathi is up and running, the user programs simply need to issue a motion
destination and every other aspect of motion planning and control is handled by Sarathi.
The same user programs can be run on other lab robots simply by replacing the current
robot plugin with the desired robot plugin. Sarathi doesn't even have to be restarted for
this to happen.

At the time of this writing, the system is under evaluation.

41

Chapter 7

Conclusion and future Work

7.1 Conclusion

This thesis commenced by proposing the hypothesis that it is possible to have a generic
software framework for robot motion planning and control, which can be con�gured to solve
speci�c robot motion tasks. In order to test the veracity of the hypothesis, the requirements
for the generic framework were identi�ed. Based on these requirements, a component based
framework was designed and implemented. The framework was then tested by using it
to control three di�erent robotic arms. It is possible to use di�erent algorithms in each
framework component through the use of plugins. Therefore, it is possible to adapt the
framework to the desired task by writing plugins suitable for the task. Considering the
successful tests conducted on the framework, it is established that the proposed hypothesis
is valid.

7.2 Future work

Although the framework works satisfactorily and is a su�cient proof of concept, it has not
yet been fully developed. This chapter identi�es areas where improvements can be made,
in order to further enhance the e�ectiveness and scope of application of the framework.

Of the components described in section 5.1, only the SOAP server, Command Proces-
sor, Path Planner, Robot, Sensor and Motion Controller have been implemented. The
others need to be written and the inter-component communication needs to be 're-wired'
to accommodate the new components.

A study needs to be made for applying the framework structure as it exists to the case
of moving obstacles.

The plugins available for the framework are limited. More plugins need to be written
in order to use the framework for scenarios beyond those used to prove the concept in this
thesis. Availability of a non-holonomic path planning plugin can immediately make the
framework applicable to mobile robots.

A testing tool called Parth, provided with the framework, can be used for limited visu-
alization. More generic visualization methods should be adopted. Advantage can be taken
of existing tools like Peekabot[16]. Blender for robotics [1, 2] is a promising direction for
visualization and robot interaction.

OROCOS, which forms the backbone of the framework has several capabilities which
can be exploited to enhance the features of the framework. Scripting support and the ability
to distribute the components over di�erent computers would be particularly attractive.

42

CHAPTER 7. CONCLUSION AND FUTURE WORK

The interfaces of the components as well as the component-plugin interfaces can be
made more exhaustive. Currently, only the functions useful for the immediate use case are
present.

More functions can be added to the SOAP server-client interface, so that client programs
have a greater runtime control over various framework features.

Developer documentation should be created to make it easier for new developers to
contribute to the project.

Wider deployment of the framework will undoubtedly reveal more needs. The free and
open source nature of the framework makes it easy for anyone to modify the code, �x bugs
and contribute their improvements back to the main source tree.

43

Appendix A

Creating robot models for the MPK path
planner

This appendix summarizes the steps taken to create a robot model for the 6 DOF KUKA
KR5 Sixx R850 robotic arm.

A.1 Introduction

Robot models for use with the MPK library need to have a �collision model� in Open
Inventor's .iv �le format. These collision models are basically .iv models of individual robot
links. The robot de�nition (.rob) �le contains parameters needed to �assemble� the link
models into the entire robot arm. The process of generating a suitable link model in .iv
format and �nding the �assembly� parameters is not immediately obvious. This document
describes the steps taken to build a .rob �le for the KUKA KR5 Sixx R850 robot arm.

A.2 Quickstart

1. Generate CAD model of individual links

2. Open each model in blender 3d[1]1. Save it in blender format

3. Shift origin of global coordinate system of each link to the point about which the link
rotates

4. Export model obtained in step 3 to .iv format

5. Use blender to calculate o�sets of coordinate system origin of each link from coordinate
system origin of previous link.

A.3 Detailed steps

1. Download a CAD model of the robot from KUKA website in .STL format

2. Import the model into blender. I used version 2.48a

1Blender is just an example. It is possible to use any software that can load the CAD model and save
it in Open Inventor format.

44

APPENDIX A. CREATING ROBOT MODELS

3. Go to edit mode, select all vertices ('A' key), set the limit to 0 and remove doubles.
This step makes it easier to select parts of the model which need to be deleted later.
Also, it could lead to a smaller .iv format representation (less vertices)

4. Now, we need models for the individual links. Decide which link is needed and the
delete all other parts of the model. Save the �le as a .blend �le. Next, export it to
the .iv format. View the resulting .iv �le with the ivview program

5. Repeat step 4 until you have .blend and .iv �les for all links

6. If you followed exactly the same steps while generating the link models for all links,
the resulting .iv �le models will be to scale and the individual link models will be
positioned at the right places. This means that if you collect together all the .iv link
models in a single .iv �le (see box to see how), you'll see the entire robot arm with all
the links in their right places

#Inventor V2.1 ascii

#robot model

Separator

{

File {name "kuka_0.iv"}

File {name "kuka_1.iv"}

File {name "kuka_2.iv"}

File {name "kuka_3.iv"}

File {name "kuka_4.iv"}

File {name "kuka_5.iv"}

File {name "kuka_6.iv"}

}

7. Next, we need to position the local coordinate system of the link models (in the
exported .iv �les) at the right point and orientation. This is important because in
the robot de�nition �les, the joint rotations are speci�ed around the axes of the local
coordinate system. Unless the local coordinate system is in the right place in each
link model, your robot links will go all over the place when you use the .rob �le in
MPK

8. The local coordinate system in the exported .iv �le matches the global coordinate
system in blender. Thus, you need to move the global coordinate system to that point
on a link, about which the link rotates, when connected to the previous link. See
�gure A.1 to see where I had to position the global coordinate system for each link
of my robot. Once you have shifted the global coordinate system to the right place,
save the .blend model and export it to .iv format again

9. Now, if you use the code given in the box above to collect the links together into a
robot model, its not going to work. This is because inventor will place all the links
such that the origins of their local coordinate system coincide. You need to specify
the o�set of the origin of the coordinate system of each link, from the origin of the
coordinate system of the previous link. For example, lets say we need to �nd the
o�set of link 3 w.r.t link 2. To do this, open the .blend model of link 2. Zoom in to
the point on the link, where link 3's coordinate system origin will touch, when it is

45

APPENDIX A. CREATING ROBOT MODELS

Figure A.1. Link models

properly assembled. Get the coordinates of this point. These will be the o�set of link
3 w.r.t link 2. Note this data carefully. You'll need it to build the .rob �le

10. Repeat the steps of point 9 till you know the o�set of each link w.r.t its previous link

11. With the data from point 10 and the .iv models from point 8 you can now assemble
the coordinate system shifted .iv models into a complete robot model. The same data
is used to create a .rob �le. Example robot �les are distributed with Sarathi

A.4 Coordinate system visualization

It is often useful to insert 3 arrows (the X-, Y- and Z- axes) to depict the coordinate system
in your .iv model. Use the code below in your .iv �le to get an idea of where the origin lies
and how the coordinate system is oriented.

#Coordinate system visualization

Separator

{

#Y-axis

Separator

{

46

APPENDIX A. CREATING ROBOT MODELS

Figure A.2. The assembled KUKA robot

BaseColor {rgb 0 1 0}

Rotation {rotation 0 0 0 -1.5707}

Cylinder {

parts ALL # SFBitMask

radius 1 # SFFloat

height 200 # SFFloat

}

Translation {translation 0 100 0}

Cone {

bottomRadius 4

height 8

}

}

#X-axis

Separator

{

BaseColor {rgb 1 0 0}

Rotation {rotation 0 0 -1 1.5707}

Cylinder {

parts ALL # SFBitMask

radius 1 # SFFloat

height 200 # SFFloat

}

Translation {translation 0 100 0}

Cone {

bottomRadius 4

height 8

}

}

#Z-axis

47

APPENDIX A. CREATING ROBOT MODELS

Separator

{

BaseColor {rgb 0 0 1}

Rotation {rotation 1 0 0 1.5707}

Cylinder {

parts ALL # SFBitMask

radius 1 # SFFloat

height 200 # SFFloat

}

Translation {translation 0 100 0}

Cone {

bottomRadius 4

height 8

}

}

}

48

Appendix B

Describing scenes for the MPK path planner

The MPK path planner module in the Sarathi framework needs a 'scene �le' as input. A
'scene �le' is a text �le describing the environment in which the path planner operates.
The environment consists of a robot and the obstacles in its workspace. The environment
description thus consists of a description (including location) of the robot and the obstacles.
This document explains how to create a custom scene �le describing the environment of
your application.

B.1 Introduction

The MPK scene �le format is an extension of the Open Inventor scene �le format. MPK
extends the Inventor �le format by three node types: mpkObstacle, mpkRobot and mpkIn-
cludeFile. These are derived from the Inventor node type SoSeparator and can thus have
the same attributes as a SoSeparator, in addition to their own speci�c attributes.

In this appendix, we will create a custom scene �le to which we will add the KUKA
KR5 Sixx R850 robot by using the mpkRobot node. Next, we will add obstacles, using the
mpkObstacle and mpkIncludeFile nodes.

B.2 Quick summary

1. Open empty text �le

2. Add the line: �#Inventor V2.0 ascii� (without the ��) as the �rst line

3. Add a robot using mpkRobot node

4. Add obstacles using either mpkObstacle or read them in from other �les using mp-
kIncludeFile

5. Save �le

B.3 Detailed steps

B.3.1 Understanding the coordinate system of your robot model
Before you create the scene �le, it is important to know the orientation and location of the
origin of the coordinate system of your robot model. For the KUKA KR5 Sixx R850 robot

49

APPENDIX B. DESCRIBING SCENES

model referred to in this document, the origin is located as shown in �gure B.1. (This �gure
shows a part of the robot base only, to make the illustration more clear)

Figure B.1. KUKA KR5 Sixx R850 coordinate system location

Within this coordinate system, the points A and B at the edge of the robot base have
coordinates as shown in �gure B.1. When the robot model is inserted into the scene descrip-
tion, this coordinate system will be the global coordinate system for the scene description.
However, it is not very convenient to have the origin of the global coordinate system at a
physically inaccessible point inside the robot's base. Hence, when adding the robot to the
scene description, we will translate it such that the global coordinate system is located at
the (more physically accessible) point A (it could just as well be at point B, or at any other
point whose coordinates are known).

B.3.2 Creating the scene file
1. Open an empty text document using your favourite text editor. Save it with a .iv

extension. For example, mykukascene.iv

2. Since the scene description is an Open Inventor �le, the �rst line must be
#Inventor V2.0 ascii

3. Comments can be added using a #at the start of a �le
#Inventor V2.0 ascii

This is a comment

Scene file with kuka robot and 3 obstacles

4. Add lines describing the kuka robot

DEF robot mpkRobot {

fileName "kuka.rob"

}

The �le kuka.rob contains a model of the kuka robot. This �le is provided for you in
the Sarathi distribution.

50

APPENDIX B. DESCRIBING SCENES

5. If we add the robot as described above, the global coordinate system is located at a
physically inaccessible point within the base of the robot, as shown in �gure1 . To
shift the location of the global coordinate system to point A, we add a line specifying
a translation of the robot. Our revised lines describing the kuka robot are

DEF robot mpkRobot {

fileName "kuka.rob"

translation -100 85 185

}

We are moving the robot with respect to the global coordinate system, which is now
e�ectively at the point A. See �gure B.2

Figure B.2. Robot translated to reposition the global coordinate system

6. We now add obstacles using mpkObstacle. An obstacle can be any Open Inventor ob-
ject node type. We will add a cube with width=height=depth=120mm. (Note that
the openinventor Cube type doesn't have to be a geometric cube. This means that the
width, height and depth parameters need not be equal to each other.) By default, the
cube is created such that it is centered at the origin of the global coordinate system.
Let us position our cube such that it is 150mm away from the origin of the global
coordinate system along the X- and Y- directions

DEF box mpkObstacle {

Separator {

Translation {translation 150 150 0}

DEF __triangulate__ Cube {

width 120

height 120

depth 120

}

}

}

The 'DEF __triangulate__' tag is required to tell MPK that the triangles of the
Cube node are part of the collision model. Similarly, one could add other Inventor

51

APPENDIX B. DESCRIBING SCENES

models inside the same mpkObstacle node. Without the 'DEF __triangulate__'
tag, the models would be displayed but will not be checked for collisions. The syntax
for translation is: Translation {translate x y z} where x,y and z refer to translation
distances along those axes. Consecuting translation transforms are concatenated. The
result of the above obstacle addition is shown in �gure B.3

Figure B.3. Cube added as obstacle

7. Notice how the cube appears to go below the plane of the robot base in �gure B.3.
This is because, the cube is, by default, centered at the origin of the global coordinate
system. We merely translated it along the X- and Y- axes in the previous step. To
make the cube base coplanar with the robot base, we need to translate it upwards
(along the positive Z- axis in this case) by half its height. Thus, we change the
translation parameters line to: Translation {translation 150 150 60}. The result is
shown in �gure B.4.

8. We will now add a cylindrical obstacle. By default, Open Inventor adds a cylindrical
obstacle such that it is centered at the origin of the global coordinate system and its
axis is aligned with the Y axis. (Ignore the commented line. It is explained in the
next step)

DEF cyl mpkObstacle {

Separator {

Translation {translation 150 150 500}

Rotation {rotation 1 0 0 -1.57}

DEF __triangulate__ Cylinder {

parts ALL

radius 120

height 200

}

}

}

52

APPENDIX B. DESCRIBING SCENES

Figure B.4. Cube coplanar with robot base

The result is shown in �gure B.5.

Figure B.5. Cylindrical obstacle added to the scene

9. What if we want to rotate the cylinder by 90 degrees? Rotations are speci�ed by a line
like: Rotation rotation {x y z angle}, where one of x,y or z must be 1, indicating the
axis around which rotation should take place. angle is speci�ed in radian. Consecutive
rotation transforms are concatenated. So to rotate the cylinder about the X- axis by
-90 degrees, just uncomment the Rotation. . . line in the code above. The result is
shown in �gure B.6.

10. Now let us put the robot on a table. We will consider a table to be an open inventor
�Cube� with relatively large dimensions along two axes (length and width) and a very

53

APPENDIX B. DESCRIBING SCENES

Figure B.6. Rotated cylindrical obstacle

small dimension along the third axis (the thickness). We can add it similar to the
way we added the Cube previously. However, this time we do things a bit di�erently.
Assume that the table is described in a �le called �table.iv�

DEF table mpkObstacle {

Separator {

Scale {scaleFactor 1 1 1}

DEF __triangulate__ File {name "table.iv"}

}

}

Note that the Scale {scaleFactor 1 1 1} line has no e�ect here, since it just scales the
table by a factor of 1 along all axes. It is included here to show the possibility of
scaling the object being included. The table.iv �le is simply contains

#Inventor V2.0 ascii

Separator {

Translation {translation 0 0 -5}

Cube {

width 1200

height 1200

depth 10

}

}

The result is shown in �gure B.7

54

APPENDIX B. DESCRIBING SCENES

Figure B.7. Robot with table

55

APPENDIX B. DESCRIBING SCENES

B.3.3 The complete scene description file
#Inventor V2.0 ascii

#Scene file with KUKA robot and 3 obstacles

DEF robot mpkRobot {

fileName "kuka.rob"

translation -100 85 185

rotation 1 0 0 -1.57

}

DEF box mpkObstacle {

Separator {

Translation {translation 150 150 60}

DEF __triangulate__ Cube {

width 120

height 120

depth 120

}

}

}

DEF cyl mpkObstacle {

Separator {

Translation {translation 150 150 500}

Rotation {rotation 1 0 0 -1.57}

DEF __triangulate__ Cylinder {

parts ALL

radius 120

height 200

}

}

}

DEF table mpkObstacle {

Separator {

Scale {scaleFactor 1 1 1}

DEF __triangulate__ File {name "table.iv"}

}

}

56

Bibliography

[1] Blender. URL http://www.blender.org/. Cited on pages 42 and 44.

[2] Blender for robotics. URL http://wiki.blender.org/index.php/Robotics:Index.
Cited on page 42.

[3] Common object request broker architecture. URL http://en.wikipedia.org/wiki/

Common_Object_Request_Broker_Architecture. Cited on page 28.

[4] Gnu plotutils. URL http://www.gnu.org/software/plotutils/. Cited on page 29.

[5] The gsoap toolkit for soap web services and xml-based applications. URL http://

www.cs.fsu.edu/~engelen/soap.html. Cited on page 28.

[6] How to create qt plugins. http://doc.trolltech.com/4.5/plugins-howto.html.
URL http://doc.trolltech.com/4.5/plugins-howto.html. Cited on page 27.

[7] The internet communications engine. URL http://www.zeroc.com/. Cited on page
28.

[8] Kuka kr 5 sixx r850 robotic arm. URL http://www.kuka-robotics.com/en/

products/industrial_robots/small_robots/kr5_sixx_r850/. Cited on pages 29
and 33.

[9] The libhyperpoint api documentation. URL http://cogvis.nada.kth.se/~behere/

sarathi/docs/libhyperpoint/html/annotated.html. Cited on page 34.

[10] Motion planning kernel (mpk). URL http://ramp.ensc.sfu.ca/mpk/index.html.
Cited on page 32.

[11] Motion planning kit. URL http://robotics.stanford.edu/~mitul/mpk/index.

html. Cited on page 32.

[12] The motion strategy library. URL http://msl.cs.uiuc.edu/msl/index.html. Cited
on page 31.

[13] Oopsmp. URL http://www.kavrakilab.org/OOPSMP/index.html. Cited on page 32.

[14] The open inventor toolkit. URL http://oss.sgi.com/projects/inventor/. Cited
on page 32.

[15] Openrave. URL http://openrave.programmingvision.com/. Cited on pages 5
and 32.

[16] Peekabot. URL http://www.peekabot.org/. Cited on page 42.

57

http://www.blender.org/
http://wiki.blender.org/index.php/Robotics:Index
http://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
http://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
http://www.gnu.org/software/plotutils/
http://www.cs.fsu.edu/~engelen/soap.html
http://www.cs.fsu.edu/~engelen/soap.html
http://doc.trolltech.com/4.5/plugins-howto.html
http://doc.trolltech.com/4.5/plugins-howto.html
http://www.zeroc.com/
http://www.kuka-robotics.com/en/products/industrial_robots/small_robots/kr5_sixx_r850/
http://www.kuka-robotics.com/en/products/industrial_robots/small_robots/kr5_sixx_r850/
http://cogvis.nada.kth.se/~behere/sarathi/docs/libhyperpoint/html/annotated.html
http://cogvis.nada.kth.se/~behere/sarathi/docs/libhyperpoint/html/annotated.html
http://ramp.ensc.sfu.ca/mpk/index.html
http://robotics.stanford.edu/~mitul/mpk/index.html
http://robotics.stanford.edu/~mitul/mpk/index.html
http://msl.cs.uiuc.edu/msl/index.html
http://www.kavrakilab.org/OOPSMP/index.html
http://oss.sgi.com/projects/inventor/
http://openrave.programmingvision.com/
http://www.peekabot.org/

BIBLIOGRAPHY

[17] The player project. URL http://playerstage.sourceforge.net/. Cited on page 5.

[18] The qt network module. URL http://doc.trolltech.com/4.5/qtnetwork.html.
Cited on page 28.

[19] Robwork. URL http://www.robwork.org. Cited on page 5.

[20] Ros. URL http://www.ros.org. Cited on page 5.

[21] The schunk dextrous hand. URL http://www.schunk-modular-robotics.com/

left-navigation/service-robotics/components/actuators/robotic-hands/

sdh.html. Cited on page 33.

[22] Software framework. URL http://en.wikipedia.org/wiki/Software_framework.
Cited on page 2.

[23] Xml rpc. URL http://www.xmlrpc.com/. Cited on page 28.

[24] The gSOAP Toolkit for Web Services and Peer-To-Peer Computing Networks, 2002.
URL http://www.cs.fsu.edu/~engelen/ccgrid.pdf. Cited on page 27.

[25] René Zapata Abraham Sánchez López and Maria A. Osorio Lama. Sampling-based
motion planning: A survey. 2008. URL http://www.cic.ipn.mx/portalCIC/s11/

vol12-01/v12no1_Art01.pdf. Cited on page 10.

[26] Nancy M. Amato and Yan Wu. A randomized roadmap method for path and manip-
ulation planning. In In IEEE Int. Conf. Robot. & Autom, pages 113�120, 1996. Cited
on page 10.

[27] Jérôme Barraquand, Lydia Kavraki, Jean-Claude Latombe, Rajeev Motwani, Tsai-Yen
Li, and Prabhakar Raghavan. A random sampling scheme for path planning. Int. J.
Rob. Res., 16(6):759�774, 1997. ISSN 0278-3649. Cited on page 10.

[28] Sagar Behere. Creating robot models for the mpk path planner. URL
http://cogvis.nada.kth.se/~behere/sarathi/dokuwiki/doku.php?id=

creating_robot_models_for_the_mpk_path_planner. Cited on page 32.

[29] Sagar Behere. Describing scenes for the mpk path planner. URL http:

//cogvis.nada.kth.se/~behere/sarathi/dokuwiki/doku.php?id=describing_

scenes_for_the_mpk_path_planner. Cited on page 32.

[30] Sagar Behere. Libsarathi api documentation. URL http://cogvis.nada.kth.se/

~behere/sarathi/docs/libsarathi/html/annotated.html. Cited on page 34.

[31] Sagar Behere. The libsarathi usage guide. URL http://cogvis.nada.kth.se/

~behere/sarathi/dokuwiki/doku.php?id=libsarathi_usage_guide. Cited on page
34.

[32] Luigi Biagiotti and Claudio Melchiorri. Trajectory Planning for Automatic Machines
and Robots. Springer Publishing Company, Incorporated, 2008. ISBN 3540856285,
9783540856283. Cited on pages 8, 12, and 13.

[33] James E. Bobrow, S. Dubowsky, and J.S. Gibson. Time optimal control of robotic
manipulators along speci�ed paths. The International Journal of Robotics Research,
1985. Cited on page 16.

58

http://playerstage.sourceforge.net/
http://doc.trolltech.com/4.5/qtnetwork.html
http://www.robwork.org
http://www.ros.org
http://www.schunk-modular-robotics.com/left-navigation/service-robotics/components/actuators/robotic-hands/sdh.html
http://www.schunk-modular-robotics.com/left-navigation/service-robotics/components/actuators/robotic-hands/sdh.html
http://www.schunk-modular-robotics.com/left-navigation/service-robotics/components/actuators/robotic-hands/sdh.html
http://en.wikipedia.org/wiki/Software_framework
http://www.xmlrpc.com/
http://www.cs.fsu.edu/~engelen/ccgrid.pdf
http://www.cic.ipn.mx/portalCIC/s11/vol12-01/v12no1_Art01.pdf
http://www.cic.ipn.mx/portalCIC/s11/vol12-01/v12no1_Art01.pdf
http://cogvis.nada.kth.se/~behere/sarathi/dokuwiki/doku.php?id=creating_robot_models_for_the_mpk_path_planner
http://cogvis.nada.kth.se/~behere/sarathi/dokuwiki/doku.php?id=creating_robot_models_for_the_mpk_path_planner
http://cogvis.nada.kth.se/~behere/sarathi/dokuwiki/doku.php?id=describing_scenes_for_the_mpk_path_planner
http://cogvis.nada.kth.se/~behere/sarathi/dokuwiki/doku.php?id=describing_scenes_for_the_mpk_path_planner
http://cogvis.nada.kth.se/~behere/sarathi/dokuwiki/doku.php?id=describing_scenes_for_the_mpk_path_planner
http://cogvis.nada.kth.se/~behere/sarathi/docs/libsarathi/html/annotated.html
http://cogvis.nada.kth.se/~behere/sarathi/docs/libsarathi/html/annotated.html
http://cogvis.nada.kth.se/~behere/sarathi/dokuwiki/doku.php?id=libsarathi_usage_guide
http://cogvis.nada.kth.se/~behere/sarathi/dokuwiki/doku.php?id=libsarathi_usage_guide

BIBLIOGRAPHY

[34] R. Bohlin and Lydia E. Kavraki. Path planning using lazy prm. In Proceedings of the
IEEE International Conference on Robotics and Automation, volume 1, pages 521�528,
San Fransisco, CA, April 2000. IEEE Press, IEEE Press. Cited on page 11.

[35] D. Box. Simple object access protocol 1.1. http://www.w3.org/TR/SOAP, 2000. Cited
on page 28.

[36] Michael S. Branicky, Ross Alan Knepper, and James Ku�ner. Path and trajectory
diversity: Theory and algorithms. In International Conference on Robotics and Au-
tomation. IEEE RAS, May 2008. Cited on page 11.

[37] Herman Bruyninckx. Open robot control software: the OROCOS project. In IEEE
Int. Conf. Robotics and Automation, pages 2523�2528, 2001. Cited on page 22.

[38] Herman Bruyninckx. Bayesian probability, 2002. URL http://www.mech.kuleuven.

ac.be/~bruyninc/pubs/urks.pdf. Cited on page 17.

[39] Herman Bruyninckx. OROCOS: design and implementation of a robot control software
framework, 2002. URL http://www.cs.jhu.edu/~hager/Public/ICRAtutorial/

Bruyninckx-OROCOS/icra2002-tut.pdf. Cited on pages 18 and 20.

[40] Herman Bruyninckx. Bayesian probability theory, September 2005. URL http://www.

roble.info/basicST/stat/pdf/Bayes-1.pdf. Cited on page 17.

[41] Herman Bruyninckx. Open RObot COntrol Software. http://www.orocos.org/, 2008.
URL http://www.orocos.org. Cited on page 22.

[42] Herman Bruyninckx and Peter Soetens. Generic real-time infrastructure for signal
acquisition, generation and processing. URL http://www.mech.kuleuven.ac.be/

~bruyninc/pubs/rtlab-design.pdf. Cited on page 17.

[43] Herman Bruyninckx, Peter Soetens, and Bob Koninckx. The real-time motion control
core of the Orocos project. In IEEE Int. Conf. Robotics and Automation, pages 2766�
2771, 2003. Cited on page 22.

[44] B. Cao, G.I. Dodds, and G.W. Irwin. Constrained time-e�cient and smooth cubic
spline trajectory generation for industrial robots. IEE Proceedings -Control Theory
and Applications, 144(5):467�475, 1997. ISSN 1350-2379. Cited on page 13.

[45] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Bur-
gard, Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Cambridge, MA, June 2005. Cited on
pages 7, 9, and 10.

[46] D. Constantinescu and E.A. Croft. Smooth and time-optimal trajectory planning
for industrial manipulators along speci�ed paths. In AMSE Dynamic Systems and
Control Division, 1999. URL http://www.me.uvic.ca/~danielac/constantinescu_

imece99.pdf. Cited on page 13.

[47] Daniela Constantinescu. Smooth time optimal trajectory planning for industrial ma-
nipulators. Master's thesis, Transilvania University, 1995. Cited on page 13.

[48] John J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989. ISBN 0201095289. Cited on
pages 8, 12, and 16.

59

http://www.w3.org/TR/SOAP
http://www.mech.kuleuven.ac.be/~bruyninc/pubs/urks.pdf
http://www.mech.kuleuven.ac.be/~bruyninc/pubs/urks.pdf
http://www.cs.jhu.edu/~hager/Public/ICRAtutorial/Bruyninckx-OROCOS/icra2002-tut.pdf
http://www.cs.jhu.edu/~hager/Public/ICRAtutorial/Bruyninckx-OROCOS/icra2002-tut.pdf
http://www.roble.info/basicST/stat/pdf/Bayes-1.pdf
http://www.roble.info/basicST/stat/pdf/Bayes-1.pdf
http://www.orocos.org/
http://www.orocos.org
http://www.mech.kuleuven.ac.be/~bruyninc/pubs/rtlab-design.pdf
http://www.mech.kuleuven.ac.be/~bruyninc/pubs/rtlab-design.pdf
http://www.me.uvic.ca/~danielac/constantinescu_imece99.pdf
http://www.me.uvic.ca/~danielac/constantinescu_imece99.pdf

BIBLIOGRAPHY

[49] O. Dahl. Path-constrained robot control with limited torques-experimental evaluation.
10(5):658�669, 1994. ISSN 1042-296X. Cited on page 16.

[50] P.J. Davis. Interpolation and Approximation. Dover, 1976. Cited on page 12.

[51] Roland Geraerts and Mark H. Overmars. A comparative study of probabilistic roadmap
planners. Technical Report UU-CS-2002-041, Department of Information and Comput-
ing Sciences, Utrecht University, 2002. Cited on pages 10 and 38.

[52] Roland Geraerts and Mark H. Overmars. Sampling techniques for probabilistic
roadmap planners. Technical Report UU-CS-2003-041, Department of Information
and Computing Sciences, Utrecht University, 2003. Cited on pages 10 and 38.

[53] Roland Jan Geraerts. Sampling-based Motion Planning: Analysis and Path Quality.
PhD thesis, Utrecht University, 2006. URL http://people.cs.uu.nl/roland/pdf/

thesis_lowres.pdf. Cited on page 10.

[54] Donald H. House. Splines. URL http://www.cs.clemson.edu/~dhouse/courses/

405/notes/splines.pdf. Cited on page 29.

[55] David Hsu, Jean-Claude Latombe, and Hanna Kurniawati. On the probabilistic foun-
dations of probabilistic roadmap planning. Int. J. Rob. Res., 25(7):627�643, 2006. ISSN
0278-3649. Cited on page 10.

[56] James J. Ku�ner Jr. and Steven M. Lavalle. Rrt-connect: An e�cient approach to
single-query path planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA, pages
995�1001, 2000. Cited on page 11.

[57] Rudolph Emil Kalman. A new approach to linear �ltering and prediction problems.
Transactions of the ASME�Journal of Basic Engineering, 82(Series D):35�45, 1960.
Cited on page 17.

[58] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps
for path planning in high-dimensional con�guration spaces. 12(4):566�580, 1996. ISSN
1042-296X. Cited on page 10.

[59] Lydia Kavraki, Mihail N. Kolountzakis, and Jean-Claude Latombe. Analysis of prob-
abilistic roadmaps for path planning, 1998. Cited on page 10.

[60] Lydia Kavraki and Jean-Claude Latombe. Randomized preprocessing of con�guration
space for fast path planning. In IN PROC. IEEE INTERNAT. CONF. ROBOT.
AUTOM. (ICRA, pages 2138�2145, 1994. Cited on page 10.

[61] Lydia E. Kavraki. Random networks in con�guration space for fast path planning. PhD
thesis, Stanford, CA, USA, 1995. Cited on page 10.

[62] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning.
Technical report, 1998. Cited on page 11.

[63] Steven M. LaValle. Planning Algorithms. Cambridge University Press, New York, NY,
USA, 2006. ISBN 0521862051. Cited on page 7.

[64] Steven M. Lavalle, James J. Ku�ner, and Jr. Rapidly-exploring random trees: Progress
and prospects. In Algorithmic and Computational Robotics: New Directions, pages
293�308, 2000. Cited on page 11.

60

http://people.cs.uu.nl/roland/pdf/thesis_lowres.pdf
http://people.cs.uu.nl/roland/pdf/thesis_lowres.pdf
http://www.cs.clemson.edu/~dhouse/courses/405/notes/splines.pdf
http://www.cs.clemson.edu/~dhouse/courses/405/notes/splines.pdf

BIBLIOGRAPHY

[65] T. Lozano-Perez. Spatial planning: A con�guration space approach. C-32(2):108�120,
1983. ISSN 0018-9340. Cited on page 9.

[66] Peter S. Maybeck. Stochastic models, estimation, and control, volume 141 of Math-
ematics in Science and Engineering. Academic Press, Inc., 1979. URL http:

//www.cs.unc.edu/~welch/media/pdf/maybeck_ch1.pdf. Cited on page 17.

[67] S. Munir and W.J. Book. Internet based teleoperation using wave variables with
prediction. In Proc. IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, volume 1, pages 43�50 vol.1, 2001. Cited on page 34.

[68] Mark H. Overmars and Mark H. Overmars T. A random approach to motion planning.
Technical report, 1992. Cited on page 10.

[69] F. Pfei�er and R. Johanni. A concept for manipulator trajectory planning. 3(2):
115�123, 1987. ISSN 0882-4967. Cited on page 16.

[70] G.M. Phillips. Interpolation and Approximation by Polynomials. Springer, 2003. Cited
on page 12.

[71] Eric S Raymond. The Art of Unix Programming. Addison Wesley, 2003. URL http:

//www.catb.org/~esr/writings/taoup/html/index.html. Cited on page 21.

[72] Gildardo Sánchez and Jean claude Latombe. A single-query bi-directional probabilistic
roadmap planner with lazy collision checking. In In Int. Symp. Robotics Research, pages
403�417, 2001. URL http://robotics.stanford.edu/~latombe/papers/isrr01/

spinger/latombe.pdf. Cited on pages 11 and 32.

[73] M. Latombe J.-C. Schwarzer, F. Saha. Adaptive dynamic collision checking for single
and multiple articulated robots in complex environments. In Robotics, IEEE Trans-
actions on. IEEE, 2005. URL http://robotics.stanford.edu/~latombe/papers/

adaptive-bisection/paper.ps. Cited on pages 10 and 32.

[74] Kang Shin and N. McKay. Minimum-time control of robotic manipulators with geo-
metric path constraints. 30(6):531�541, 1985. ISSN 0018-9286. Cited on page 16.

[75] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics: Mod-
elling, Planning and Control. Springer Publishing Company, Incorporated, 2008. ISBN
1846286417, 9781846286414. Cited on pages 8, 10, 11, 12, 13, and 16.

[76] Dan Simon. Optimal State Estimation: Kalman, H In�nity, and Nonlinear Approaches.
Wiley-Interscience, 2006. ISBN 0471708585. Cited on page 17.

[77] J.-J.E. Slotine and H.S. Yang. Improving the e�ciency of time-optimal path-following
algorithms. 5(1):118�124, 1989. ISSN 1042-296X. Cited on page 16.

[78] Christian Smith. Input Estimation for Teleoperation. PhD thesis, Royal Institite
of Technology, Stockholm, Sweden, Nov 2009. URL http://www.csc.kth.se/~ccs/

Publications/phd_thesis_smith.pdf. Cited on page 34.

[79] Peter Soetens. The orocos component builder's manual. http://www.orocos.org/

stable/documentation/rtt/v1.10.x/doc-xml/orocos-components-manual.html,
2007. URL http://www.orocos.org/stable/documentation/rtt/v1.10.x/

doc-xml/orocos-components-manual.html. Cited on pages 24, 26, and 27.

61

http://www.cs.unc.edu/~welch/media/pdf/maybeck_ch1.pdf
http://www.cs.unc.edu/~welch/media/pdf/maybeck_ch1.pdf
http://www.catb.org/~esr/writings/taoup/html/index.html
http://www.catb.org/~esr/writings/taoup/html/index.html
http://robotics.stanford.edu/~latombe/papers/isrr01/spinger/latombe.pdf
http://robotics.stanford.edu/~latombe/papers/isrr01/spinger/latombe.pdf
http://robotics.stanford.edu/~latombe/papers/adaptive-bisection/paper.ps
http://robotics.stanford.edu/~latombe/papers/adaptive-bisection/paper.ps
http://www.csc.kth.se/~ccs/Publications/phd_thesis_smith.pdf
http://www.csc.kth.se/~ccs/Publications/phd_thesis_smith.pdf
http://www.orocos.org/stable/documentation/rtt/v1.10.x/doc-xml/orocos-components-manual.html
http://www.orocos.org/stable/documentation/rtt/v1.10.x/doc-xml/orocos-components-manual.html
http://www.orocos.org/stable/documentation/rtt/v1.10.x/doc-xml/orocos-components-manual.html
http://www.orocos.org/stable/documentation/rtt/v1.10.x/doc-xml/orocos-components-manual.html

BIBLIOGRAPHY

[80] P. Svestka. Robot Motion Planning Using Probabilistic Road Maps. PhD thesis, Utrecht
University, 1997. Cited on page 10.

[81] Antonio Visioli. Trajectory planning of robot manipulators by using algebraic and
trigonometric splines. Robotica, 18(6):611�631, 2000. ISSN 0263-5747. Cited on page
13.

[82] Greg Welch and Gary Bishop. An introduction to the kalman �lter. Technical re-
port, Chapel Hill, NC, USA, 1995. URL http://www.cs.unc.edu/~welch/media/

pdf/kalman_intro.pdf. Cited on page 17.

[83] Josie Wernecke. The Inventor Mentor: Programming Object-Oriented 3d Graphics with
Open Inventor, Release 2. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1993. ISBN 0201624958. Cited on page 32.

[84] ISO/IEC JTC1 SC22 WG21. Iso/iec tr 18015: Technical report on c++ performance.
Technical report, ISO, July 2004. URL http://www.open-std.org/jtc1/sc22/wg21/

docs/TR18015.pdf. Cited on page 22.

[85] Zhaoxue Yang and Edward Red. On-line cartesian trajectory control of mechanisms
along complex curves. Robotica, 15(3):263�274, 1997. ISSN 0263-5747. Cited on page
8.

[86] Milos Zefran. Review of the literature on time-optimal control of robotic manipulators.
Cited on page 16.

[87] C.S. Zhao, M. Farooq, and M.M. Bayoumi. Analytical solution for con�guration space
obstacle computation and representation. In Proc. IEEE IECON 21st International
Conference on Industrial Electronics, Control, and Instrumentation, volume 2, pages
1278�1283 vol.2, 1995. Cited on page 9.

62

http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf

	Dedication
	Abstract
	Acknowledgments
	Contents
	Introduction
	The motion planning and control problem
	Motivation for the master thesis
	Contribution and outline of the thesis
	Terminology

	Current state of the art
	A theoretical overview
	Path planning
	The path: representation and characteristics
	Properties of planning algorithms
	Probabilistic roadmap methods

	Trajectory generation
	Fitting a set of data points
	Imposition of a timing law

	Motion control
	Sensing and estimation

	Framework requirements
	Design requirements
	Must have
	Good to have
	Wish list

	User requirements

	Implementation
	The framework structure
	The role of each component
	Anatomy of a component
	Intercomponent communication
	Plugin management

	The SOAP server component
	The motion control component
	The time-invariant motion controller

	The path planner component
	The MPK planner plugin

	The robot component
	The KUKA KR5 Sixx R850 robot plugin

	The libhyperpoint library
	The libsarathi client library

	Testing
	Test tools
	Parth
	APIease

	Testing methodology
	An example use case

	Conclusion and future Work
	Conclusion
	Future work

	Appendices
	Creating robot models
	Introduction
	Quickstart
	Detailed steps
	Coordinate system visualization

	Describing scenes
	Introduction
	Quick summary
	Detailed steps
	Understanding the coordinate system of your robot model
	Creating the scene file
	The complete scene description file

	Bibliography

