
A Functional Reference Architecture for Autonomous
Driving

Sagar Beherea,∗, Martin Törngrena

aKTH The Royal Institute of Technology, Brinellvägen 83, Stockholm SE-10044, Sweden

Abstract

Context
As autonomous driving technology matures towards series production, it is nec-

essary to take a deeper look at various aspects of electrical/electronic (E/E) archi-
tectures for autonomous driving.

Objective
This paper describes a functional reference architecture for autonomous driving,

along with various considerations that influence such an architecture. The function-
ality is described at the logical level, without dependence on specific implementation
technologies.

Method
Engineering design has been used as the research method, which focuses on cre-

ating solutions intended for practical application. The architecture has been refined
and applied over a five year period to the construction of prototype autonomous ve-
hicles in three different categories, with both academic and industrial stakeholders.

Results
The architectural components are divided into categories pertaining to (i) percep-

tion, (ii) decision and control, and (iii) vehicle platform manipulation. The architec-
ture itself is divided into two layers comprising the vehicle platform and a cognitive
driving intelligence. The distribution of components among the architectural layers
considers two extremes: one where the vehicle platform is as "dumb" as possible,
and the other, where the vehicle platform can be treated as an autonomous system
with limited intelligence. We recommend a clean split between the driving intelli-
gence and the vehicle platform. The architecture description includes identification
of stakeholder concerns, which are grouped under the business and engineering cate-

∗Corresponding author
Email addresses: behere@kth.se (Sagar Behere), martint@kth.se (Martin Törngren)

Preprint submitted to Information and Software Technology December 15, 2015

gories. A comparison with similar architectures is also made, wherein we claim that
the presence of explicit components for world modeling, semantic understanding, and
vehicle platform abstraction seem unique to our architecture.

Conclusion
The concluding discussion examines the influences of implementation technologies

on functional architectures and how an architecture is affected when a human driver is
replaced by a computer. The discussion also proposes that reduction and acceleration
of testing, verification, and validation processes is the key to incorporating continuous
deployment processes.

Keywords: Autonomous driving, functional architecture, E/E architecture,
reference architecture

1. Introduction

Autonomous driving is considered to be the ’next big thing’ in the automotive
domain. From the universities during the DARPA Grand and Urban challenges
in 2004/2007 to technology showcases like the Google self-driving car, autonomous
driving technology has shown a steady maturation. Today, most major truck and
passenger car OEMs across the world (Daimler, BMW, Audi, Ford, Nissan, Volkswa-
gen, Volvo, ...) have active development projects in this area and typically exciting
demonstrators are exhibited every year at popular public events like the Consumer
Electronics Show (CES) in Las Vegas, USA.

The autonomous driving demonstrators developed so far involve some sort of
"perception and higher intelligence" plugged on top of a base vehicle platform which
usually incorporates computerized control of functions like propulsion and braking.
As the technology readiness levels (TRLs) [1] increase and autonomous driving fea-
tures move closer to series production, it is necessary to take a deeper look at the
electrical/electronic (E/E) architectures for autonomous vehicles. These architec-
tures cover not only the hardware, software, and communication stacks within the
various Electronic Control Units (ECUs) inside the vehicle, but also the functional
hierarchies required for autonomous driving and their distribution across architec-
tural elements. Factors like horizontal and vertical control layers, distribution and
allocation of components, arbitration and conflict resolution, fault propagation and
isolation of system failures, system safety, optimality of implementation, cognitive
complexity etc. need to be considered for each particular deployment related to au-
tonomous driving.

2

Figure 1: Simplified context of a functional architecture

1.1. Functional architecture
We use the term ’functional architecture’ with a definition corresponding to the

notion of ’functional concept’ in the ISO26262 functional safety standard [2]. The
standard defines a functional concept as, "specification of the intended functions and
their interactions necessary to achieve the desired behavior". A functional archi-
tecture then refers to the logical decomposition of the system into components and
sub-components, as well as the data-flows between them. It does so without reference
or prejudice to the actual technical implementation of the architectural elements in
terms of hardware and software. An analogous term to functional architecture is
’functional view’ of the architecture description. This term is recommended by ISO
42010 [3] and pertains to the architectural description of software intensive systems,
from a functional viewpoint. In this paper we will use the terms ’functional architec-
ture’, ’functional view’ and their combination ’functional architecture view’ (FAV)
synonymously.

3

"Figure 1 shows a simplified systems engineering context within which the arti-
facts may be represented in the form of models." The top part of the Figure shows
that the process of systems engineering begins by understand the user’s needs, which
are captured in a high level ’Concept of Operations’. These are the basis for the high
level requirements which the system is intended to fulfill. The system is then devel-
oped and subsequently, deployed and operated. The lower part of the Figure shows
an amplified view of system development. It shows that there are broadly three as-
pects (i) Requirements drill-down (ii) Implementation drill-down, and (iii) Testing,
Verification and Validation. The implementation drill-down consists of a number of
levels that go from the more abstract towards the more concrete. Each level has cor-
responding requirements and test cases. The first level is the Functional Architecture,
which shows the logical components and their inter-connections, without reference
to how they can be technically implemented. The technical implementation details
are filled out in the next level - the technical architecture. The technical architecture
components are then mapped to specific application software components, which in
turn execute on a "platform". The platform consists of the silicon (microprocessors,
microcontrollers, GPUs etc.) with optional layers of (real-time) operating systems,
language runtimes and board support packages, and any middleware that abstracts
the platform details. The notions of Functional and Technical architecture agree with
the terms used in the ISO26262 functional safety standard. As the implementation
gathers more detail, there is a corresponding increase in the number of associated
requirements and test cases. The correspondences are depicted with bi-directional
arrows in Figure 1. These correspondences are sometimes referred to as "vertical
and horizontal traceability links" in the systems engineering process. For example,
requirements derived from a high level requirement may be linked with blocks in an
architecture diagram and both can then be linked with specific test cases. If a change
occurs at either end of a link, a "flag" can be raised on the link to indicate a change
in status. In model based systems engineering, the various artifacts generated during
the systems engineering process are represented in the form of inter-linked models.
Throughout system development, safety considerations are applicable at all levels
and this is notionally depicted in the Figure by the ’Safety Concepts and Analysis’
dimension.

The FAV constitutes a generic solution pattern for a given set of system behaviors,
which may then be implemented in a variety of ways. Thus, it constitutes a reference
solution and the term reference architecture is also associated with the FAV. The
reference architecture may then be instantiated to create a particular solution. In
this paper, we omit the term ’reference’ in ’functional reference architecture’ where
such an omission does not impede understanding. The FAV closely corresponds to the

4

functional view of the system software architecture, since autonomous systems are
highly software intensive. In fact, the FAV is a necessary precursor to the design of
all information and software enabled functionality in an autonomous driving system.

1.2. Goals, Contribution, and Scope
The goal of this paper is to provide a proven reference solution for autonomous

driving architectures, up to L4 levels of autonomy1. This solution shall assist archi-
tects of autonomous driving systems by raising into "public" debate the various con-
siderations and solution possibilities that influence the architecture of a self-driving
vehicle. These may then be evaluated within the contexts of individual projects and
associated constraints, leading to specific architectural solutions. Regardless of which
particular choices an architect makes, it is important that he or she is aware of the
range of possibilities for each choice, the pros, cons and tradeoffs associated with it,
as well as the metrics used to assess an architecture and take decisions. A functional
architecture serves this goal well, since it is the starting point for architecture design
and potentially, a common ancestor for a wide variety of implementations.

This paper provides three contributions to the literature in this area: 1. A
discussion of the key elements in a functional architecture for autonomous driving
2. A proposal on the division of the architecture into layers and reasoning on the
distribution of the architectural elements across these layers, and 3. A proposed
functional architecture for autonomous driving.

The scope of the paper is restricted to the functional architecture only; not its
technological implementation. The architecture is for a single vehicle, with further
delimitation to the vehicle motion specific subsystems. The vehicle may, however,
communicate with other vehicles and the infrastructure. Priority is given to the
division of the architecture into layers and components, describing the component
functionality and their distribution among the layers, and the associated rationale.
A rigorous description of the component interfaces for fully constraining their defini-
tion is avoided. This is because we believe such a description is more important for
the Technical Architecture. The context of the discussion assumes the possibility of
creating a legacy free, "clean sheet" vehicle design, although due care is taken to ac-
knowledge the constraints imposed by existing vehicle architectures. Lastly, although

1The L4 autonomy level is described by the National Highway Traffic
Safety Administration (NHTSA) in their policy concerning automated vehicles
[http://www.nhtsa.gov/staticfiles/rulemaking/pdf/Automated_Vehicles_Policy.pdf] and refers to
"full self-driving automation" where the driver is not expected to be available for control at any
time during the drive.

5

Figure 2: Research projects contributing to architecture development

the architecture itself is applicable to both prototype as well as series production ve-
hicles, we delimit the discussion in this paper mostly to development of prototypes.
Therefore, concerns related to series production are not particularly well-reflected in
the discussed requirements and stakeholder concerns.

1.3. Research method
Research methods of Engineering Design have been used to develop the archi-

tecture. Engineering design is one of the research methods in systems engineering
[4] wherein researchers address a problem which is important and novel through the
activity of designing a solution [5]. The knowledge developed is directly useful for
practical application. An additional outcome is theoretical development based on
generalization of design experiences.

This paper is an aggregated presentation of cumulative research results, from the
projects shown in Figure 2. Our architecture has its roots in the development of
a practical solution for the problem of creating a self-driving truck operating in a
platoon (convoy) of vehicles. The truck in question, an R730 tractor unit from the
Swedish manufacturer Scania CV AB, is already in series production. We developed
a plug-in system that required minimal modifications to the truck and enabled au-
tonomous longitudinal motion in a platoon. The truck participated (and performed
successfully [6]) in the Grand Cooperative Driving Challenge (GCDC), which took
place on a public highway in The Netherlands in 2011. Subsequent generalization of

6

the developed theoretical knowledge led to a reference architecture on cooperative
driving [7]. The reference architecture was re-instantiated with additional function-
ality, using a different hardware stack and re-written software, for a different type
of truck, for the CoAct 2012 Challenge. The CoAct Challenge was a Swedish follow
up to the GCDC 2011, wherein participating vehicles were also expected to perform
lateral maneuvers for overtaking and merging into the middle of a platoon. Once
again, the re-instantiation performed successfully, validating the reference architec-
ture on a different vehicle, in different scenarios. Following CoAct 2012, the refined
architecture was opened up for extended refinement, stake-holder feedback, and ex-
pert analysis in the FUSE project [8], which aims at developing Functional Safety
and Architecture for autonomous driving with passenger cars (Volvo car corporation
is the automotive partner in this project). Meanwhile, a novel, legacy free, drive-by-
wire electric vehicle was developed at KTH [9], to be used as a Research Concept
Vehicle (RCV) platform for autonomous driving concepts. Our architecture enables
the RCV to be a test platform for novel perception, control, and motion algorithms.
The RCV platform is being developed further (RCV 2.0) by a private company with
a vision for commercializing novel self-driving vehicles. Our architecture is an im-
portant enabler of the overall product vision. In 2016, KTH intends to participate
in the second GCDC competition (GCDC 2016) where this architecture is expected
to be reused.

The practical development and evaluation has been complemented by a compre-
hensive state-of-the art survey completed in 2013 [10], looking at the how the domains
of Intelligent Control, Cognitive and Real Time Control architectures, Robotics, com-
ponent based middleware, and software development intersect with the automotive
domain and affect autonomous driving systems.

A potential weakness of engineering design, as a qualitative research method, is
that of external validity. This is addressed here by a multitude of different case studies
and engagement with experts in different domains. The applications have involved
a variety of commercial and research vehicle projects, in academic and industrial
contexts.

In summary, the architecture presented in this paper has been in continuous
development, application, refinement, and validation since the past five years.

1.4. Outline
This paper is organized as follows: Section 2 lists and categorizes the various

components needed in a functional architecture for autonomous driving. The func-
tionality of each component is also briefly described. The distribution of these com-
ponents across different layers in an architecture is then described in Section 3. This

7

is done by presenting two different extremes of functionality distribution, their pros
and cons, and finally our recommended distribution and its motivation. Section 4
then presents a three layer architecture for autonomous driving. First, the stakehold-
ers and their concerns are described, followed by the actual architecture, followed by
a comparison with similar architectures. Section 5 then presents a discussion, which
begins by reflecting back on the stakeholder concerns and a commentary on how they
are fulfilled. The influences of technical implementation concern on the conceptual
architecture are then discussed, followed by how the architecture is influenced when a
human driver is replaced with a computer. The discussion also considers the impact
of machine learning and the need for continuous deployment in terms of requirements
on testing, verification, and validation. Finally, Section 6 concludes the paper and
states topics of interest for future publications.

2. Functional components

We have opted to split the principal FAV components of the motion control part
of the autonomous driving system into three main categories, as shown in Figure 3.
These categories are related to

1. Perception of the external environment/context in which the vehicle operates
2. Decisions and control of the vehicle motion, with respect the external environ-

ment/context that is perceived
3. Vehicle platform manipulation which deals mostly with sensing, control and

actuation of the Ego vehicle, with the intention of achieving desired motion

Each category has several components, whose functionality (from a strictly ar-
chitectural perspective) will now be described.

2.1. Perception
A commonly heard phrase in the robotics community is, "Sensing is easy, percep-

tion is difficult.". Sensing means gathering data on physical variables using sensors,
while perception refers to the semantics (interpretation and "understanding") of that
data in terms of high level concepts relevant to the task being undertaken. As such,
sensing is just one part of an overall perception system.

The sensing components can be categorized into those sensing the states of the
ego vehicle and those sensing the states of the environment in which the ego ve-
hicle operates (sometimes referred to as the internal and external environments).
A second and relevant categorization of sensor components, from the viewpoint of
systems integration, depends on the amount of processing needed to extract relevant

8

Figure 3: Components of a FAV of an autonomous driving system

information from the sensor data. In our experience, this usually depends on the
TRLs of both the sensor and the integrated system. At lower TRLs, in highly ex-
perimental vehicles and/or sensors, it is more common to work with raw sensor data
and its filtering, estimation, fusion, association, and possible classification operations
are performed as distinct and important parts of the overall system. An example
of this is the processing of data from some multi-beam laser rangefinders, which re-
turn angle and distance measurements for each beam, typically at rates of 10Hz or
more. At the opposite end of the spectrum are high TRL sensors from automotive
vendors, which come packaged with data processing elements. Such sensors may
directly output detected objects in the environment, along with relevant attributes
of the detected objects like relative position, velocity, acceleration etc. Some sensor
providers offer even higher level information, like the class of the detected object
(car, truck, motorcycle, pedestrian, ...). The reason why this type of categorization
is important is that it permits the systems integrator to treat the sensor compo-
nent as a blackbox2 and the sensor’s output may be routed directly to the semantic
understanding component or even directly to the world model. High TRL sensors
are more commonly found in the automotive industry in late stage prototypes and
when selecting or using them, emphasis often shifts to extra functional properties
like failure probabilities, confidence levels of output data, and common mode failures
with other sensors. This is because, factors like training datasets which a vendor
may have used, data processing algorithms and their properties like time constants

2Although some sensors retain the ability to transmit raw as well as processed information.

9

etc. tend to be a grey area for the systems integrator, yet the same factors may have
a non-trivial impact on the analysis of safety properties of the system. In compari-
son, when processing of raw sensor data is an explicit part of the overall system, the
details tend to be more transparent, although that does not necessarily make the
analysis is easier.

The sensor fusion component, as the name indicates, considers multiple sources
of information to construct a hypothesis about the state of the environment. In addi-
tion to establishing confidence values for state variables, the sensor fusion component
may also perform object association and tracking. Association refers to correlating
pieces of information from multiple sensors to conclude that they refer to one and
the same object. The process of tracking generates information about an object
over a series of temporal readings. This information can be used either to track an
object’s attributes (e.g. relative velocity), or to classify the object into categories in
a subsequent block (e.g. a sequence of readings is more likely than a single reading,
to reveal an object as a pedestrian.). Finally, for certain system configurations, the
sensor fusion block may also be used to eliminate some un-associated objects and
data that is strongly likely to be superfluous or noise. This reduces the computation
and communication load on subsequent components, like the decision and control,
which need to work with the perceived data.

The localization component is responsible for determining the location of the
vehicle with respect to a global map, with needed accuracy. It may also aid the sen-
sor fusion component to perform a task known as map matching, wherein physical
locations of detected objects are referenced to the map’s coordinate system. The
localization component typically uses a combination of GPS and inertial measure-
ment sensors. Certain algorithms try to improve on the accuracy of localization by
identifying visual landmarks via cameras. The base map layers have traditionally
been stored onboard, but the trend is to move towards tiled maps, where individual
tiles are dynamically streamed from a service provider based on vehicle location, but
which may be locally cached.

The semantic understanding component is the one in which the balance shifts
from sensing to perception. More concretely, the semantic understanding component
can include classifiers for detected objects and it may annotate the objects with ref-
erences to physical models that predict likely future behavior. Detection of ground
planes, road geometries, representation of driveable areas may also happen in the
semantic understanding component. In specific cases, the semantic understanding
component may also use the ego vehicle data to continuously parameterize a model
of the ego vehicle for purposes of motion control, error detection and potential degra-
dation of functionality.

10

The world model component holds the state of the external environment as
perceived by the ego vehicle. Conceptually, it is possible to think in terms of an ex-
tended or compound world model that includes the internal states of the ego vehicle,
thus simultaneously representing the vehicle internal and external worlds. However,
in practice, we have experienced that such compound world models rarely exist, be-
cause requirements and technologies at the technical architecture level usually lead to
separated, optimized implementations. Also, the producers, consumers, and process-
ing involved of data originating from the ego vehicle and its external environment,
have qualitative differences. Not having a compounded world model does not elim-
inate a great deal of value and having a compounded world model does not add a
great deal of value. Therefore, in most practical implementations, the world model
component as described here, only represents the external world of the ego vehicle.
We like to characterize the world model component as either passive or active. A
passive world model is more like a data store and may lack semantic understanding
of the stored data. Therefore, it can not, by itself, perform physics related computa-
tions on the data it contains, to actively predict the state of the world given specific
inputs. The active world model, on the other hand, may incorporate kinematic and
dynamic models of the objects it contains and be able to evolve beliefs of the world
states when given a sequence of inputs. Other components (like decision and con-
trol) may then request a set of predictions of future world states, for a specific set
of inputs, in order to determine the optimal inputs to be applied. The passive world
model, as described above, is by far the most common in the autonomous driving
projects we have encountered. In fact, there are efforts to create a (semi-) standard-
ized representation [11] of the world in the form of so called ’Local dynamic maps’
(LDM) [12]. An LDM is technically implemented as a database, but can be con-
ceptually thought of as a layered map. The bottom-most layers represent the most
static beliefs about the world, while the topmost layers represent the most dynamic,
in the sense of time. For example, the lowermost layer may be populated with a
static map of the immediate surroundings of the vehicle (roads, permanent features,
etc.). The layer above it may be populated with more-or-less static road objects
(traffic lights, lane markings, guard rails). The next layer may contain temporary
objects like diversions due to construction work. The final layer would be populated
by fast-moving objects detected by the rest of the perception system (other vehi-
cles, pedestrians, etc.). The world model component typically provides an interface
to query its contents, add and remove data, concurrency, access control, replication
over distributed computational media etc. In specific cases, it also holds historical
information about some or all of its contents.

11

2.2. Decision and control
The decision and control category refers to those functional components which are

concerned by the vehicle characteristics and behavior in the context of the external
environment it is operating in. Reference is made to the vehicle as a whole and the
way it moves in its environment, energy and fault management concerns that affect
the vehicle’s motion to its destination, as well as reactive control to unexpected
events in the environment. The specific details of the vehicle platform that actually
generate the desired external behavior and characteristics are not of prime interest.

The trajectory generation component repeatedly generates a set of obstacle
free trajectories in the world coordinate system and pick an optimal trajectory from
the set. The generation and/or selection of an optimal trajectory is constrained by
factors like limitations of platform motion (e.g. non-holonomicity), energy availabil-
ity, and the state of the platform with regards to faults and failures.

The emergence of dedicated, holistic energy management components is a
relatively recent phenomenon, stimulated by the growth of hybrid and electric ve-
hicles. This component is usually split into closely-knit sub-components for battery
management and regenerative braking. Since energy is a system-wide concern, it is
not uncommon for the energy management component to have interfaces with other
vehicular systems like Heating, Ventilation and Air-Conditioning (HVAC), lights,
chassis, and brakes. For autonomous driving, sensors and associated fusion and
computation silicon may account for a significant energy consumption.

Diagnosis and fault management throughout the system components is an
integral part of any well designed architecture. In the context of decision and con-
trol, this refers to identifying the state of the overall system and its components,
with respect to available capabilities. The identified state would be used to influence
behavior like redundancy management, systematic degradation of capabilities, trig-
gering transitions to and from safe states, and potential driver handover. Note that
this functional component notionally unites the various diagnostics and fault man-
agement functions associated with architecture components distributed throughout
the system, and acts on their output.

Reactive control components are used for immediate (or "reflex") responses to
unanticipated stimuli from the environment. Existing vehicle features like collision
mitigation by braking may be considered as reactive control. These components ex-
ecute in parallel with the nominal system and if a threat is identified, their output
overrides the nominal behavior requests. Their sense-plan-act loops are typically at
least an order of magnitude faster than the nominal system loop. It is sometimes the
case that what is considered reactive behavior in the presence of unexpected events,
can be dealt with by very fast deliberative behavior. For example, consider the

12

Autonomous Emergency Braking (AEB) feature in some passenger cars. This is con-
sidered a reactive function, that monitors a small subset of sensors (compared to full
autonomous driving) and initiates braking action in case of imminent collision with
a moving or stationary object. The function is constantly active (when enabled) and
may generate a deceleration demand that overrides other demands on the propulsion
subsystem. However, if the perception and trajectory generation components are suf-
ficiently fast, they could detect the threat and generate appropriate trajectories (in
this case, strong deceleration) as part of their normal operation, negating the need
for a specialized AEB system. Such a specialized system may still be implemented
as a redundancy measure for supervisory control, if a system safety analysis suggests
provable improvement in safety or decrease of ASIL requirements on other parts of
the system. However, it wouldn’t be a functional necessity. The call for reducing
reactive functionality in favor of fast, deliberative functionality needs to be taken in
consultation with domain experts and by considering the specific algorithms involved
and the characteristics of their technical implementation. In particular, worst case
execution times and end-to-end timing analyses are important factors.

The vehicle platform abstraction component refers to a minimal model of the
vehicle platform. This model is calibrated and parameterized to reflect the actual
vehicle platform and is the part that gathers most of the vehicle specific information.
It can either form the interface to the vehicle platform, or it may wrap static data
parameters representing a specific configuration. Ideally, this is also the part that
needs to be changed when transitioning between different vehicle platforms (typically
from the same family). This component may also abstract a virtual or hardware-in-
the-loop (HIL) vehicle platform, which is useful for the case when the entire cognitive
driving intelligence layer needs to be tested without a physical vehicle.

2.3. Vehicle platform manipulation
This category groups the components that are directly responsible for the motion

of the vehicle. They abstract the principal actuation subsystems and also provide a
minimum level of stability to the platform while it is in motion. Although not directly
related to propulsion, components related to passive vehicle safety and occupant
protection may be included in this category, since they are closely related to scenarios
arising from undesirable propulsion and may be triggered by the decision and control
components.

The platform stabilization components are usually related to traction control,
electronic stability programs, and anti-lock braking features. Their task is to keep
the vehicle platform in a controllable state during operation. Unreasonable motion
requests may be rejected or adapted to stay within the physical capabilities and

13

safety envelope of the vehicle.
The trajectory execution components are responsible for actually executing the

trajectory generated by Decision and Control. This is achieved by a combination of
longitudinal acceleration (propulsion), lateral acceleration (steering) and deceleration
(braking). Most recent vehicles already incorporate such components and they may
be considered "traditional" from the perspective of autonomous driving development.

3. Functionality distribution

We consider an autonomous vehicle architecture as broadly comprising of a vehicle
platform and a cognitive driving intelligence. These two parts may be considered as
two distinct layers of the architecture. It is then necessary to consider at least the
following two questions

1. What kind of information should flow between the cognitive driving intelligence
and the vehicle platform layers?

2. Are any changes necessary/desirable in a given vehicle platform, if it will be
controlled by a computer, instead of a human being?

Answers to both questions depend on the distribution of functionality between the
vehicle platform and the cognitive driving intelligence. Currently, most autonomous
driving experiments that build on existing, in-production vehicles follow a typical
pattern: The vehicle contains a network of electronic control units (ECUs) controlling
the basic vehicle propulsion (lateral and longitudinal acceleration, braking). The
vehicle manufacturer usually builds a "gateway" that allows the experimenters to
send a limited set of commands to the ECUs in the vehicle network. These commands
are usually set-points for the various control loops that exist in the vehicle platform.
For example, the cognitive driving intelligence may continuously regulate the set-
point of the cruise-control function in the vehicle.

From a theoretical viewpoint, the distribution of functionality between the cog-
nitive driving intelligence and the vehicle platform can lie between two extremes,
as shown in Figure 4. In the Figure, the vertical placement of the components
(above or below dotted line) denotes which layer they are allocated to. It is only this
placement that is important; the horizontal placement and location relative to other
components in the same layer are purely aesthetic and carry no meaning. On one
extreme, Figure 4 (a), the cognitive driving intelligence directly controls the torque
outputs of the vehicle platform actuators, in a so-called "distributed I/O approach".
There is no greater intelligence in the vehicle platform, which then represents just
a set of distributed inputs/outputs. The cognitive driving intelligence then needs

14

Figure 4: Distribution of functional components across the layers in an autonomous driving
architecture

15

intimate familiarity with the vehicle platform and it would be difficult to de-couple
and reuse the one without the other. The other extreme, Figure 4 (b), treats both
the cognitive driving intelligence as well as the vehicle platform as two cooperating,
relatively autonomous entities. Neither knows the intimate details about the other
and the driving intelligence makes motion demands of the vehicle platform in world
coordinates, which the latter makes a best effort to fulfill. The task of the driving
intelligence is to perceive the world and make motion requests in this world, while
the task of the vehicle platform is to realize the desired motion requests while keep-
ing its own features and limitations in mind. In such an ideal de-coupling, the same
driving intelligence should be able to operate a variety of vehicle platforms with only
minor changes to the vehicle platform abstraction, provided the interface between
them remains the same.

The functionality distribution shown in Figure 4 (a) leads to simplicity of the
vehicle platform, but it has significant drawbacks from the viewpoint of complexity,
separation of concerns, and technical feasibility. In order to perform closed-loop
propulsion control of the vehicle platform, the driving intelligence would need a fairly
detailed model of the platform, including its dynamics and the constraints on the
vehicle actuators and sensors. Performing fine-grained (short time horizon) control
of the actuators by using motion feedback from the perception system may place
unreasonably high demands on the technical implementation and performance of the
perception system. The functionality distribution shown in Figure 4 (b) on the other
hand, is attractive because it enables a relatively clean separation of concerns. The
driving intelligence need not be concerned with the finer details of how the motion it
desires is achieved, just a minimal model of the vehicle’s motion characteristics, via
the vehicle platform abstraction component. The vehicle platform does not need to
be concerned with how and why the motion commands are generated - only whether
they are realizable and if so, how to best realize them given the current platform
capabilities. Concepts related to stabilization of the platform, like traction control,
anti-lock brakes etc. are transparently realized by the vehicle platform, without the
driving intelligence having to be aware of them.

Our recommendation, based on the experiences described in Section 1.3, as well
as the recommended architecting best practices of separating concerns and loose
couplings, is to achieve as clean a split as possible, between the driving intelligence
and vehicle platform [(Figure 4 (b)]. This lowers the cognitive complexity [13] (cog-
nitive effort needed to understand a model) of the architecture, as well as reduces
the potential for feature interaction and other undesirable emergent behavior, for
example by clearly delineating the tasks of trajectory generation and its execution.
It also enables better re-use of the driving intelligence and vehicle platform in other

16

projects. That said, any assumptions made regarding the behavior and performance
of the vehicle platform need to be made explicit via the platform abstraction compo-
nent. This is especially true for end-to-end latencies on the fulfillment of acceleration
requests and interpretation of sensor data by the controllers in the vehicle platform.
The approach (of Figure 4 (b)) places high demands on the functionality available
in the vehicle platform, with regards to its abilities for keeping the platform stable
and retaining basic self-protection measures which may include reactive control. In
practice, this is unlikely to be an issue because the high-end vehicles of most auto-
motive OEMs today already incorporate such functionality and it is these high-end
vehicles that are the most likely candidates for receiving upgrades to self-driving
functionality.

4. Functional reference architecture

This section presents a functional reference architecture for autonomous driving,
that has emerged from our work. It brings together all the functional components
described so far and distributes them over the cognitive driving intelligence and
vehicle platform layers. Also, it follows our proposal of achieving a relatively clean
split between the two.

4.1. Stakeholders concerns
An architecture balances stakeholder concerns and requirements. The stakeholder

concerns, delimited to a functional architecture, can be classified into two categories:
business and engineering.

In our experience, the principal business concerns are

1. Possibility of a smooth upgrade path from existing product architecture. Par-
ticularly for OEMs with extensive product portfolios, it is desirable that the
architecture of an autonomous driving system is realized as an incremental
evolution of products. This facilitates maximum reuse of existing resources.

2. A unified architecture for autonomous and non-autonomous product variants.
3. Modularized architecture enabling simultaneous in-house and out sourced de-

velopment of different architectural elements.
4. Use of an economic, automotive grade sensor set for perception. For mass

produced automobiles, a significant amount of resources can be devoted to
reducing prices by the tens of cents. In such a context, it is not economically
feasible to utilize perception sensors that may well cost more than the vehicle
itself. Thus, even though excellent results may be demonstrated by researchers
using an expensive sensor set, the automotive industry as a whole is looking

17

to achieve acceptable results with upgrades to sensor sets already utilized for
existing features like Traffic Jam Assist, Adaptive Cruise Control, Pedestrian
protection etc. Although prices may be eventually reduce based on volume of
demand, strategic decisions to prefer one set of sensors over another result in
substantial variation of the perception system architecture.

5. Minimization and acceleration of required testing, verification, and validation
activities. Increasing autonomy makes it increasingly difficult to complete ver-
ification and validation in a timely manner. Therefore any architecture and
implementation strategies that reduce time-to-market are of great business in-
terest.

6. Designs and technologies that are certifiable and which reduce the certification
efforts. It is already obvious that existing standards, regulations, and laws will
need changes to account for autonomous driving systems. The exact extent of
the changes is still not known, but concerns related to provable safety and cer-
tification are ranked highly. There is an especial tension here, since safety and
certification related concerns advocate conservative technological approaches,
while realizing the functionality of autonomous driving inherently requires bold
new choices in technology and even the underlying mathematical algorithms.

7. Possibility of post-sale modifications to the in-vehicle software, to leverage
improvements in driving algorithms, fix issues discovered late in the lifecycle, as
well as to introduce on demand additional software based features. Companies
are keen to avoid public product recalls and the ability to fix problems during
regular vehicle servicing, or even ’over-the-air’ is of great value.

At the functional architecture level, the principal engineering concerns are related
mostly to the available functionality and possibilities of developing and testing the
functionality in independent chunks

1. At least the functionality provided by the components described in Section 2
needs to be available in the autonomous driving architecture.

2. The ability to develop individual subsystems as independently as possible. This
is especially relevant during the algorithm development stage.

3. Virtualized and simulated testing possibilities, to prevent practical vehicle op-
eration concerns from slowing down early development.

4. Acknowledgment and due consideration given to technical and implementation
concerns that rise up to the conceptual architecture level. While theoretically,
a top-down approach will indeed not be prejudiced by technological and imple-
mentation concerns during functional architecture design, in practice it is quite
important to keep technical implementation constraints in mind even during

18

the functional architecture phase. At the very least, this helps to create func-
tional components that map more cleanly to the components in the technical
architecture.

4.2. Architecture
The proposed architecture is shown in Figure 5. For technical and practical

reasons, some components like energy management and diagnostics are allocated to
both the vehicle platform as well as the driving intelligence. However, each allocation
has slightly different responsibilities and scope of operation. For example, diagnosis
and fault management appears both in the platform and the cognitive intelligence
layer. The sensing and world model components, although conceptually unified,
are split into those dealing with the external environment of the vehicle and those
dealing with the Ego vehicle platform. The split helps to achieve separate technical
implementations, if required, when the functional architecture is eventually refined
to a technical architecture. The inter-component arrows in Figure 5 represent data-
flows in the direction of the arrow. As shown, the outputs of the sensing components
go to the rest of the perception and decision and control components, either directly
or indirectly, depending on the level of processing and fusion that is needed.

In our experience, it is useful to establish a data link between localization and
sensor fusion. Certain sensors may exhibit repeatable tendencies at fixed locations
along specific routes, like increase in false positives, dropouts etc. Changing the level
of confidence in a sensor, based on geographical location is an interesting line of
research and the architecture should not be a limiting factor.

Another interesting data link in Figure 5 is the connection from the semantic
understanding component to the sensor components. This is useful in at least three
scenarios. Firstly, some specialized autonomous driving situations benefit from so-
called focused attention mechanisms. Focused attention means exploring a specific
part of the environment more deeply. This may require physical motion of the sen-
sors and/or configuration changes to the sensors (panning a camera to a different
field of view, changing the ’zoom’ of a lens, etc.). Today, most sensors of most au-
tonomous vehicles are physically fixed to a constant pose with respect to the vehicle
coordinate system. But in the domain of mobile and cognitive robotics, it is quite
common to have, for example, a pan-tilt-zoom camera to aid the robot in a search
task. Secondly, calibration changes to the sensors may be needed at runtime (e.g.
changing exposures based on time of day, triggering re-calibration if changes in phys-
ical alignment are suspected). Thirdly, if communication transceivers are considered
as a kind of sensor/actuator, the semantic understanding component can use it to
respond to incoming communication requests, publish ego vehicle information and

19

Figure 5: A functional reference architecture for autonomous driving

20

make asynchronous requests for information. Such communication requirements are
often an integral part of scenarios like cooperative driving, where a vehicle maintains
constant communication to the infrastructure and other vehicles in the vicinity.

The decision and control components include energy management from the per-
spectives of mission completion and overall vehicle energy demands (interior and
exterior lights, HVAC). This is in contrast to the energy management component in
the vehicle platform, that manages blending of hybrid propulsion systems, regener-
ative braking, and parts of the battery charge management and cell load balancing
in electrical vehicles.

The interface between the cognitive driving intelligence and the vehicle platform
consists of a multitude of trajectories in the form of motion vectors. Each vector
is a time series of requested vehicle motion parameters like acceleration, velocity,
etc. In the extreme case, instantaneous parameters may be sent along the interface,
rather than a time series. However, if the vehicle platform is aware of the expected
motion demands in the upcoming, short time horizon, it is possible to use more
optimized motion control algorithms. We propose that at least two trajectories be
sent continuously to the vehicle platform. One which takes the vehicle to its desired
destination and another which takes it to a safe(r) state via open-loop control, in
case of sudden loss of the cognitive driving intelligence layer.

The reactive control in this particular architecture is allocated to the vehicle plat-
form, since our particular technical implementations of the perception and decision
and control components have not been fast enough to deal with unexpected events
as part of the deliberative control. Also, having the reactive control in the vehicle
platform makes it easier to assure a basic level of self-protection for the vehicle plat-
form, in case the cognitive driving system is totally disabled. Since the passive safety
components like airbags, pre-tensioners of seat belts etc. are very tightly coupled to
the vehicle platform and unlikely to be easily reused in other vehicle platforms, their
control components are also a part of the vehicle platform.

We have not shown the interactions between the functional components in the
vehicle platform, keeping space limitations of this paper in mind. Recent vehicles
already incorporate components like platform stabilization, reactive control and ab-
straction of the motion control actuators. Thus, the novelty in the vehicle platform
is lower, compared to that of the driving intelligence. Nevertheless, it is impor-
tant to clarify that the physical actuation systems are abstracted by the ’Propul-
sion/Steering/Braking’ component in Figure 5.

So far in this paper, we have completely neglected to describe the reverse or
return flow of data from the vehicle platform to the driving intelligence. Partially
this is because the contents of the dataflow depend not only on the distribution of

21

functionality, but also on the particular algorithms within each functional component.
Although, it is tempting to consider only one-way communication from the driving
intelligence to the platform and letting the perception system close the loop, in
practice, the platform can provide a constant flow of states and possible asynchronous
notifications that are useful for feedback and feedforward to the driving intelligence.
This is particularly true in case of degraded platform functionality, where the driving
intelligence must quickly make sure that the generated trajectories are still realizable.
The driving intelligence usually incorporates a model of the vehicle platform and the
reverse data flow may be used to continuously learn and adjust the model parameters.
Furthermore, comparisons with the model and actual vehicle states can lead to better
fault detection and associated reasoning related to the vehicle platform.

Finally, we note the presence of an off-board layer for tele-operation and remote
monitoring, at the very top of the architecture. It is important to elaborate a bit on
this, even though the scope of this paper is delimited to an individual vehicle. The
off-board layer, depending on its functionality, needs to tap into various parts of the
on-board architecture. In our experience, the maximum amount of data exchange
occurs with the World Model, since it holds practically all the useful information
needed by the off-board layer. This includes the information regarding the current
state of the on-board systems, the perceived external environment, as well as any
upcoming motion decisions that may be in the execution pipeline. At the remote end,
all received information is typically accumulated in a database, which in turn feeds
application specific views of the gathered data. Active teleoperation [14] is foreseen in
use-cases where a fleet of autonomous vehicles is overseen by a command-and-control
center. In such use cases, the vehicle may be able to "call home" when it gets stuck, or
the remote center may actively claim control in potentially hazardous situations. In
these cases, the tele-operation part of the system architecture needs to communicate
with the Decision and Control part of the on-board systems. The commands sent
are usually brief motion requests relative to the current location of the vehicle, or
reprogrammed destinations. In our experience, the remote commands are directed at
the cognitive intelligence and have relatively low bandwidth requirements. However,
viewing raw sensor data (e.g. from high resolution cameras) has higher bandwidth
demands and so does direct control of the components in the vehicle platform. This
is rarely possible over large distances with existing communication networks.

An additional benefit of the off-board architecture and its integration with the on-
board systems is related to testing, verification, and validation of new functionality
and learning systems. When algorithms for new functions and active supervisory
control need to directly affect the vehicle motion, such functions can be enabled
to the extent that their actuation decisions are not realized, but reported to the

22

remote monitoring systems. Given a fleet of vehicles operating in realistic situations,
performance indicators of the new functions (e.g. false positives) can be gathered
fairly rapidly and the functions can be enabled when sufficient confidence in their
performance has been established.

4.3. Comparison with similar architectures
Given the proliferation of autonomous driving projects, it is useful to compare

the proposed architecture with those from other similar ongoing/previous projects.
The intent of the comparison is to highlight similarities and differences, rather than
make claims of which architecture is "better". This is because, in contrast to the
domain of task-specific algorithms (e.g. anti-lock braking), most of which can be
objectively and quantitatively assessed at fine-grained levels, the domain of systems
architecting in the automotive world is still largely driven by qualitative aspects like
legacy considerations, brand values, organizational and development processes, com-
mitments to specific technology partners and so on. An architecture needs to be
evaluated in its context, because the context imposes unique constraints with associ-
ated implications on the design. Thus, we choose to believe that every architecture
that works has merits in its own context and that there is rarely a definitively best
solution to any given architectural problem.

In this section, we make comparisons with the architectures of Junior - Stanford’s
entry in the 2007 DARPA Urban Driving Challenge, the HAVE-IT project, and
a Mercedes Benz autonomous car. These architectures are relevant because they
represent a steady improvement of functionality and implementation, over the past
decade. Junior is a successful example of a self-driving vehicle from the early days
of the technology and a largely academic proof-of-concept. The HAVE-IT project
consortium had strong representations from OEMs and Tier 1 suppliers from the
automotive domain, as well as independent research institutes and universities - the
project focused on highly automated driving and advanced driver assistance systems.
The Mercedes Benz autonomous car development had the automotive OEM Daimler
AG as the majority stakeholder.

The architecture of Stanford University’s DARPA Urban Challenge entry, Junior
[15], is also relevant. This is an early example of an autonomous driving archi-
tecture and the interface to the VW Passat vehicle is via steering/throttle/brake
controls, rather than direct longitudinal and lateral acceleration demands. This can
probably be explained by the assumption that the autonomous driving architec-
ture was designed exclusively for tight integration with one particular vehicle, which
lacked general vehicle dynamics interfaces for setting acceleration and deceleration
setpoints. The architecture is divided into five distinct parts for sensor interface,

23

perception, navigation, user interface, and the vehicle interface. The localization
is integrated into the perception part and there seems to be no effort to classify
detected obstacles. This architecture also explicitly includes a component/layer for
’Global Services’ dealing with functionality like file systems and inter-process com-
munication. We do not describe these services because they do not strictly fit into
an architecture’s functional view, as defined in section 1.1. The architecture is not
strictly divided into layers, nor is there an explicit component to abstract the view
of vehicle platform.

The layered approach to architectures and their description is also found in the
European HAVE-IT project [16], which had its final demonstrations in June 2011.
This project architecture consists of four layers: ’Driver interface’, ’Perception’,
’Command’ and ’Execution’. The Perception layer consists of environmental and
vehicle sensors and sensor data fusion. There is no mention of localization, per-
haps because the system operates in close conjunction with a human driver. The
Command layer contains a component named ’Co-Pilot’, which receives the sensor
fusion data and generates a candidate trajectory. A ’mode selection’ component in
the Command layer then switches between the human driver and the ’Co-Pilot’ as
a source of the trajectory to be executed. The selected trajectory is then handed
to the Execution layer in the form of a motion control vector. The Execution layer
consists of the Drivetrain control, which in turn controls the steering, brakes, engine,
and gearbox. This execution layer corresponds closely to our vehicle platform layer
in that it pertains to drivetrain control and "..to perform the safe motion control
vector." [16]. Also similar is the usage of a motion control vector as an interface
to the vehicle platform/execution layer. Our architecture additionally incorporates
energy management as an explicit part of the decision and control component, which
is especially valuable for electric and hybrid drivetrains, since then considerations
of estimated range can be incorporated in the long term trajectory planning. The
HAVE-IT architecture evolved in the context of Advanced Driver Assistance Systems
(ADAS) with a strong reliance on the human driver and emphasis on driver state
assessment components in the command layer; it remains unclear how well it can be
adapted to L4 autonomous systems, where a human driver may not be present.

Close comparisons can be made with the architectural components of Bertha, the
Mercedes Benz S-class vehicle, that recently(2014) completed a 103 mile autonomous
drive from Mannheim to Pforzheim [17]. In the system overview presented in [17],
components like perception, localization, motion planning, and trajectory control
are clearly identified. These agree well with the components we have described in
this paper, however this is hardly surprising. Every autonomous driving system
requires these functional components and they are likely to show up in practically

24

every architecture for autonomous driving. The system overview in [17] does not ex-
plicitly acknowledge the existence of components for semantic understanding, world
modeling, energy management, diagnostics and fault management, and platform sta-
bilization. It is possible that some or all of these were present, but not mentioned.
This is especially true for diagnostics and fault management. A part of semantic
understanding, related to classification of detected objects can (and often is) put in
the Perception component, as in [17], but we see benefits in the explicit separation
of sensor fusion and semantic understanding advocated by our architecture. The
isolation of semantic understanding from raw sensor fusion enables faster and more
independent iterations and testing of newer algorithms, without affecting the rest
of the system. This is directly relevant to the engineering stakeholder concerns of
independent development of individual subsystems, as well as their virtualized sim-
ulation and testing. Further, the raw object data from sensor fusion is still of value
to the Decision and Control components, despite a lack of accompanying semantic
understanding. This is because, although knowledge of whether a detected object
is a pedestrian or motorcycle is useful for optimized path planning, collision with
the object still needs to be avoided regardless of its classification. In a similar vein,
incorporating a distinct component for world modeling, enables incremental sophisti-
cation in internal representations while retaining (backwards compatible) interfaces.
The existence of a distinct world model components makes it easier to answer ques-
tions like, "How will the world evolve if I perform action X instead of action Y?"
Although [17] mentions the existence of a ’Reactive Layer’, it makes no mention of
any other layers in the architecture and how the components are distributed across
them. In our paper, we make a clear distinction between the vehicle platform and
cognitive driving intelligence layers and provide a rationale for our proposed compo-
nent distribution.

Comparison of these and a few other architectures with our proposed architec-
ture leads us to believe that the explicit recognition of semantic understanding, world
model, and vehicle platform abstraction components are unique to our architecture.
This is not entirely coincidental, since our incorporation of these components is, to
some extent, a deliberate action to resolve the short-comings we perceived during our
early state of the art surveys. Furthermore, our architecture has been applied to a
larger variety of vehicles (commercial trucks, passenger cars, as well as novel, legacy
free designs) and therefore necessarily incorporates features related to greater isola-
tion of functionality into distinct components and abstraction of vehicle interfaces.
The aggressive partitioning of architectural components provides significant freedom
to the component developers to modify and test new algorithms, without affecting
the rest of the system. It also reduces the cognitive complexity of the system and

25

makes it relatively easy to foresee potential pitfalls and debug causes of objectionable
behavior.

5. Discussion

A functional architecture is merely the first step in the architecting process rec-
ommended by safety standards like ISO26262 and other design methodologies. Yet,
it already yields enough material for an engaging discussion and has far reaching
consequences for the overall system design. In this section, we reflect back on the
presentation so far and highlight a number of additional topics relevant to the dis-
cussion

5.1. Stakeholder concerns
In section 4.1, we pointed out that business concerns required a unified architec-

ture for autonomous and non-autonomous product variants, and a smooth upgrade
path from the existing product architecture. These concerns are fulfilled by the
architecture by virtue of the proposed layers and distribution of functionality be-
tween them. Under the reasonable assumption that it is an OEM’s modern flagship
product which will be upgraded to autonomous driving, it can be argued that the
vehicle platform layer corresponds closely to the existing non-autonomous product.
This is because it incorporates all the functionality needed by a non-autonomous
vehicle and rather little functionality needed by an autonomous one. The existence
of components to realize given acceleration or velocity setpoints is already present
in modern (non-autonomous) vehicle architectures. Such components are necessary,
because they are integral for realizing existing ADAS features like adaptive cruise
control, lane keeping assist, automatic emergency braking etc. The upgrade path
to an autonomous vehicle variant therefore consists of adding the cognitive driving
intelligence layer to the existing vehicle platform. The functionality mentioned in
the stakeholder concerns relating to environmental perception, localization, trajec-
tory generation and tracking, propulsion control, and fault handling is present and
accounted for in the architecture, via the different architectural components shown
in Figure 5.

The key difference between implementations of the vehicle platforms for au-
tonomous and non-autonomous vehicles would be with respect to available redundan-
cies in the system, that ensure at least fail-safe operation. One the one hand, it can be
argued that such redundancies are unnecessary. Such an argument states that since
human driven vehicles do not incorporate redundancies, they are not necessary when
the human is replaced by an equivalent driving intelligence. Such arguments miss

26

out on the fact that social acceptance for accidents caused by autonomous driving is
likely to be substantially lower than accidents caused human drivers. Furthermore,
for autonomous driving to be justified, the accident rate needs to be lower than for
human driven vehicles. Therefore, in event of failures in the vehicle platform compo-
nents, it should be possible to bring the vehicle to a safe state. One way of achieving
this is via redundant systems. However, redundancies add to vehicle cost and some-
times there is no physical space remaining in the vehicle to accommodate redundant
units. Both these factors can, to some extent, be mitigated by smarter actuator
and component design (multiple independent brake systems within the same hous-
ing, redundant ECU cores operating in lockstep, etc.), as well as utilizing inherent
system redundancies to provide degraded functionality (e.g. steering by braking).
The challenge for employing systematic degradation of complex system behaviors, in
order to avoid full redundancy, is that verifying all degradation modes and assuring
system properties like safety is more complex. In the absence of established theo-
retical methods-of-proof that are acceptable to certification authorities, the industry
sometimes prefers to simply bypass the problem by installing a full redundant system
which will take over in case of primary system failure. Such a pattern is well-known
and accepted, reducing the burden-of-proof demanded by certification. However, the
mentioned problems of cost and space claim will no doubt drive the development of
acceptable techniques in this area.

Our proposed functional architecture makes no assumptions on any particular
sensor setup. As such, it neither promotes nor limits the usage of particular automo-
tive grade sensors. However, the component definitions permit independent develop-
ment and testing of whole subsystems and even vehicle architecture layers. This is
instrumental to speeding up the testing, verification, and validation processes. In our
experience, an experimental setup as shown in Figure 6 provides maximum flexibility
to implement and test different parts of the architecture. The setup distinguishes
between concrete artifacts, final software implementations on targeted hardware,
and simulations. The simulations are further split into Hardware-In-the-Loop (HIL)
rigs, those running on a general purpose computer in software like Simulink ("soft
simulations"), and virtualized sensors and vehicles operating in a synthetic three
dimensional environment, like a 3D gaming engine. Each of these can be swapped
in and out as needed during development, making individual subsystem develop-
ers less reliant on the availability of other functioning subsystem implementations.
For example, the drivetrain controllers on target hardware can be tested against a
drivetrain HIL rig, in the absence of a physical drivetrain. Similarly, code in the cog-
nitive driving intelligence can be tested often against a virtual vehicle in a synthetic
3D world, eliminating the need for a functioning physical vehicle to be constantly

27

Figure 6: A setup for development and testing of the architecture

available.
The components, partitioning, and layers of the architecture acknowledge tech-

nical implementation concerns and typical technologies, as discussed in the next
subsection.

5.2. Influences from the technical architecture
The way functionality is separated into layers in the proposed architecture is an

acknowledgment of the underlying technical implementation differences between the
cognitive driving functions and the vehicle platform functions. Each layer can be im-
plemented by a different team, using different technology stacks, tools, programming
styles and even differing educational backgrounds. The importance of this should
not be underestimated in any serious development project.

In our repeating experience, due consideration needs to be given to differences
between three different domains, with respect to technical skills of their practitioners
and their tools of choice. These are the domains of control engineering, embedded
systems programming, and computer science.

• Control engineers are used to implementing their algorithms in tools like Simulink.
They initially test and verify their algorithms using rapid control prototyping
tools like the dSpace MicroAutoBox, Simulink Real-Time, NI LabView etc.
Such tools make it possible to execute models at the push of a button and the
engineers do not need to think about things like memory allocation, threads,

28

mutexes and semaphores etc. The engineers do not need to be expert pro-
grammers and any relatively minor programming effort can be encapsulated
in constructs like Simulink’s S-Functions. Entire vehicle functions can be de-
veloped, prototyped, tested, calibrated, and verified without touching a single
line of source code, focusing only on algorithmic (control specific) concerns.

• Embedded systems programmers are typically used to programming with re-
source constrained microcontrollers, often at the register and peripheral levels.
The code executes either on the bare silicon, or with lightweight, deterministic
RTOSes. Primary concerns are to keep the programming efficient, real-time,
and conservative. Scheduling of tasks, input/output, interrupt handlers, safety
critical development practices etc. are important as well.

• Computer scientists generally run their code on relatively "big" general purpose
computer systems, typically with operating systems like Linux, gigabytes of
RAM and storage, heavyweight middleware like the Robot Operating System
(ROS) and many software programs concurrently executing on the computers.
Tools for live graphical visualization of data, data loggers, network connectivity,
etc. all run concurrently on such systems. The programmers often do not
need to perform rigorous analyses for real-time, worst case execution times,
schedulability, and resource consumption, so long as the computers are over-
sized and powerful enough.

At least during the early prototyping stage, it becomes the responsibility of the
architects to enable the domain experts to go ahead with their own preferred de-
velopment tools and practices. This usually becomes a matter of selecting suitable
toolchains and development platforms, which are connected together in the vehicle
using networks like CAN and/or Ethernet.

In the proposed architecture, the components in the vehicle platform are typi-
cally implemented by control engineers and embedded systems programmers. The
components of the cognitive driving intelligence are implemented by computer scien-
tists. The former execute on "micro-controller" like platforms, the latter on general
purpose computers, with their associated differences in toolchains. Moreover, with
the setup shown in Figure 6, the different components can be developed and tested
independently, to a large extent. The components of the conceptual architec-
ture can be mapped without being split up, onto computational platforms
in the technical architecture.

29

5.3. Reusing the vehicle platform
The emphasis on separation of concerns and system partitioning naturally raises

the question of whether it is possible to reuse the cognitive driving intelligence and
vehicle platform layers independently of each other. This would require the defi-
nition of functional and extra-functional requirements on both layers and a means
of encoding those requirements formally into the system. An example of the latter
is the vehicle platform abstraction component in the proposed architecture, which
encodes the motion specific vehicle platform specification. In our implementations,
this component has been rather simple; it held the kinematics and vehicle dynamics
parameters specifying the limits and capabilities of the vehicle platform. It was used
mostly by the trajectory generation component to generate trajectories that would
be realizable by the vehicle platform. The specification of a complete set of parame-
ters that constrain the vehicle platform definition is, we believe, still an active area of
research. In this section, we highlight some key factors that influence the definition
(and reusability) of a vehicle platform.

• The distribution of functionality across components in the two layers, as
described in Section 3, has the strongest influence on reusability. This is be-
cause the interfaces between the two layers strongly depend on the capability
of each layer, which in turn is defined by the components present in it. For a
cognitive driving intelligence layer to be reused on another vehicle platform, it
is necessary for the two vehicle platforms to have identical functionality. For
the component distribution we propose, the vehicle platform needs to have the
capability to accept and execute motion trajectories which are specified either
as instantaneous values of motion vectors, or a time series of motion vectors.
A vehicle platform may be capable of accepting two simultaneous trajectories,
one of which takes the vehicle to the desired destination, which the other takes
it to a safe(er) state. The structural and semantic interface between the two
layers needs to be identical.

• The extra-functional requirements on signals flowing between the two
layers, like accuracy, precision, frequency of transmission etc. are heavily influ-
enced by the vehicle motion specification. The maximum desired acceleration
and deceleration, velocity, braking distance, allowable trajectory tracking error
in the vehicle platform have a close inter-play with the timing of processes in the
cognitive driving intelligence. For example, the period of time elapsed between
two successive sweeps of a lidar sensor has a direct impact on the maximum
safe velocity of the vehicle platform. Too high a velocity would mean that the
vehicle covers a significant distance between two sensor readings, leading to

30

potentially dangerous situations in case of system failures. This can be miti-
gated by using time offseted readings of redundant sensors, which in turn puts
requirements on the sensor fusion, perception, and classification processes.

• The energy management capabilities of the platform and strategy for pri-
oritizing supply of energy to platform components can significantly influence
the decision and control parts of the cognitive driving intelligence. For exam-
ple, a coupling at the working fluid circuit level between energy demanding
subsystems like the vehicle interior Heating Ventilation and Air Conditioning
(HVAC) and cooling of motion critical components like electric motors, bat-
tery packs etc. can lead to differences in the energy utilization strategies at the
cognitive driving intelligence level. As such, details of the vehicle platform’s
mechanical construction need to be a part of the vehicle platform specification.

• For systems where handover to a human driver is expected, the driver mon-
itoring features that may be built into the vehicle platform need to be a part
of the state information communicated from the vehicle platform to the cogni-
tive driving intelligence. Ideally, such functionality would not be a part of the
vehicle platform, but this depends on legacy considerations that would vary
from one platform to another.

• Levels of redundancy available in the vehicle platform and the capabilities
and limitations of the redundant subsystems are an important platform char-
acteristic. While the cognitive driving intelligence need not be aware of the
finer details of subsystem redundancies, it needs to know how their function-
ing affects the platform capabilities, at least from a fail-safe or fail-operational
perspective, so as to determine when it is no longer an option to continue
autonomous driving.

• The support for teleoperation at the vehicle platform level has an influence
on reusability. When creating the overall vehicle architecture, the locations
at which the teleoperation stack has hooks and interventions into the archi-
tecture needs to be determined. If the teleoperation stack provides low-level
commands (like wheel torques or engagement of brakes) to components in the
vehicle platform, in addition to providing higher level motion trajectories to
the cognitive driving intelligence, then it is necessary that the structural and
semantic teleoperation interface is a part of any resuable platform specification.

• The high and low voltage DC power bus architecture (for electric vehicles)
and communication network topology affects how the cognitive driving

31

intelligence works with the vehicle platform, at least from the perspective of
power supply, energy management, and redundant means of communication
with the vehicle architecture and its components. Also, the behavior of the
vehicle platform in case of loss of communication with the cognitive driving
intelligence is an important factor when making safety arguments pertaining
to overall vehicle behavior.

• The non-motion related items of the vehicle platform like horn, interior and
exterior lighting, body, interior controls, and climate systems, Human Machine
Interface etc. also need to be a part of the vehicle platform specification, in the
context of reusability.

Given the richness of the vehicle platform specification and the deep dependencies
between many different aspects of the vehicle platform and the cognitive driving
intelligence, it remains to be seen whether reusability across product portfolios is
a realistic goal for the near future. Nevertheless, we consider that the separation
of concerns and system partitioning is relevant for managing the system complexity
and fits the purpose of a functional reference architecture, as an ideal model.

5.4. Replacing the human
One useful way to assess the architecture is to compare its components and their

functionality with the capabilities of a human driver. We choose to make the com-
parison by discretizing the human driver’s activities into a set of categories and then
reasoning on the vehicle architecture effects of each category. One of the models to
discretize the human driver’s activities is the Observe-Orient-Decide-Act (OODA)
model [18]. The OODA loop, shown in Figure 7, was developed by US military
strategist John Boyd and has found wide acceptance in many fields of human en-
deavor related to rapid judgment and decision making in an uncertain environment.

Broadly speaking, the Observe, Orient and Decide parts of the loop, as applied
to overall vehicle motion, would be performed by the cognitive driving intelligence
components. The Observe part corresponds to the sensor components in the architec-
ture, whereas the Orient and Decide parts correspond to the semantic understanding
and Decision and Control components respectively. The Act part of the OODA loop
corresponds to the vehicle platform. It is important to point out that this map-
ping is with respect to the overall vehicle motion. For the operation of individual
parts, like the vehicle platform control, similar OODA loops or other patterns may
be present at a more fine-grained level. Both the observe and orient parts can apply
to internal contexts i.e. the Ego vehicle states, as well as to external contexts i.e.
the environment within which the Ego vehicle operates.

32

Figure 7: The OODA loop. [source: adapted from CC-BY 3.0 licenced image by Patrick Edwin Moran]

With regards to observation (sensing), the suite of sensors on an autonomous
vehicle may collectively match (and even exceed) the sensory capabilities of ordinary
human drivers. However, the Orientation part, corresponding to the perception and
interpretation of sensory data remains far superior in humans. This is because hu-
mans can construct the external context far more rapidly than computers can and
they can reason more broadly and deeply about it than a computer can. Further-
more, humans can also apply rapid learning to their orientation capabilities. With
computers, the extent of learning is still rather limited and restricted to specific
contexts. Learning also presents a particularly difficult problem when it comes to
product deployment, as discussed in the next section.

The ’Act’ part of the OODA loop is implemented via the vehicle platform. The
main changes to the vehicle platform, when driven by a computer, relate to increased
redundancy and self-protection. Redundancy needs to be provided not just to ensure
safety, but also to increase the availability (non-disruption of provided service) in
order to complete the mission.

An alternative to the OODA model is the Monitor-Analyze-Plan-Execute plus
Knowledge (MAPE-K) model [19, 20]. This model had its origins in the management
of Information Technology systems, but has found wide applicability in architectures
for robotics applications and adaptive systems. In the MAPE-K loop, sensors and
actuators are attached to a ’managed element’ and they connect the managed element
to an ’autonomic manager’. The autonomic manager consists of processes to monitor
the managed element, analyze the monitored data, as well as to plan desired outcomes
and execute the plans via the actuators. The managed element typically represents

33

a hardware or software resource. The combination of the managed element and its
autonomic manager is together referred to as an ’autonomic element’. Hierarchical
MAPE-K loops can be applied to an architecture for autonomous driving, such that
a managed element at one level of the hierarchy can be an autonomic element in a
lower level. A detailed analysis of our architecture in the context of a MAPE-K loop
has not yet been made. However, we believe that the MAPE-K loop can be especially
applicable to redundancy, monitoring, and supervisory elements of the architecture.

The replacement of a human driver with a computer changes the nature of com-
munication with the driving platform. In the case of the human, the communication
is more qualitative in nature and performed by operating a set of buttons, levers, and
pedals. A human driver does not know (or need to know) quantitatively, the amount
of acceleration he or she is requesting, when pressing the gas pedal. In contrast, a
computer communicates with the vehicle platform in a more precise and quantitative
manner. A precise value of acceleration or deceleration is requested and it is expected
that the resulting motion can be quantitatively evaluated for conformance with the
request. The driving computer may also have access to far more details about the
internal state of the vehicle platform, compared to the knowledge a human driver
maintains about the vehicle, while driving it. However, with the proposed split of
the architecture into a driving intelligence and a vehicle platform, it is expected that
the level of information that the two components need to know about each other, is
minimized and encapsulated in the vehicle platform abstraction component.

Finally, it is unlikely that in the near future, computers will demonstrate rea-
soning capabilities that match or exceed humans. Also, autonomous vehicles are
envisioned as just one component of a future Intelligent Transport System(ITS).
Both these factors point to the need for some sort of off-board intelligence (human
or machine) that will assist the autonomous vehicle in a multitude of ways. This is
captured in the proposed architecture using the topmost layer for off-board services.
The redistribution of functionality between on-board and off-board vehicle systems
will thus be an interesting area of exploration.

5.5. Learning and continuous deployment
Automated driving depends heavily on software and software is prone to having

bugs. As the volume and complexity of software in vehicles increases, it becomes
increasingly difficult to achieve sufficient test coverage and it is likely that problems
in software can be discovered after product launch. Fixing these problems requires
post-sale modifications to the in-vehicle software, which is a stakeholder concern
discussed in Section 4.1. However, this is just one motivation for introducing the
ability of continuous software deployment in vehicles.

34

Another motivation is related to the very nature of the software itself. Software
algorithms can leverage learning over time to improve and optimize their perfor-
mance. Incorporation of learning poses problems in the traditional business model.
Traditionally, OEMs prefer to extensively validate the core software prior to commer-
cial deployment. Once the vehicles are deployed, any modifications to the software
usually require re-validation of not just the individual modification, but possibly of
the entire modified vehicle. Revalidating the entire vehicle every time a change is
made is not economically feasible. Also, with the current methods of testing and ver-
ification, the entire validation process takes just too long. We foresee that addressing
this challenge would require both reduction and acceleration in the amount of test-
ing and verification that is needed. This requires advances in two distinct areas:
The virtual testing and verification of vehicles, and the development of ’correctness-
by-construction’ methods. The former would be needed in a scenario where field
vehicles submit learned information to the OEM "cloud" where the learning can be
extensively tested on virtual vehicles in virtual scenarios, in accelerated time. Only
that learning which measurably improves the vehicle performance and is established
to be safe, would be accepted and subsequently deployed. The latter advancement
(in correctness-by-construction) methods is crucial in order to remove the need for
verification of the entire vehicle, when changes are made to specific subsystems. Such
methods should assure, for example, a ’side-effect-free’ integration of individual com-
ponents. Techniques like design by contracts, contracts based programming, etc. are
useful in completely constraining the definition of individual (sub)components and
proving that when a replacement component fulfills all constraints, there is no change
to the overall system behavior.

On the topic of learning, any improvements to the cognitive driving intelligence
need to be categorized, for example, as rule based, knowledge based, and skill based
[21]. Improvements in some specific categories are likely to be incorporated far more
rapidly than in others. An example of this is where the vehicle relies on constantly
updating maps supplied from off-board sources. The map may be considered a knowl-
edge source and any updates to the map that contain instances of more and detailed
information, in previously known categories, would help the same vehicle software
to make potentially better decisions. In contrast, improvements to a pedestrian de-
tecting algorithm would be considered a ’skill based’ improvement and would need
to be validated far more thoroughly than the map case.

6. Conclusion and future work

The functional architecture described in this paper has been refined and applied
to three different vehicle categories, in different projects spanning a five year period.

35

The architecture helped each project in meeting its goals. At the same time, we ac-
knowledge that there are no uniquely and definitively correct solutions in architecting
and at this point it is difficult to say anything beyond, "These ideas are derived from
the state of art and practice and they have worked well for us." We believe that
patterns exist for autonomous driving architectures and these patterns ought to be
documented and debated. In this paper, we have contributed to such efforts by
describing the principal functional components needed for autonomous driving, to-
gether with some reasoning regarding their distribution across the architecture. A
specific architecture incorporating the ideas has also been presented.

Future work in this area could be in the refinement of the conceptual architec-
ture, as well as documentation and elaboration on the model based development
processes used to refine the conceptual architecture and develop vehicles based on
it. In particular, we would like to address the following topics in future publications

• A deeper safety centric analysis in the form of functional safety concepts as per
ISO26262

• A comprehensive definition of component interfaces, requirements, and com-
putation characteristics

• Description of a technical architecture, based on the proposed conceptual ar-
chitecture

• Methods of testing, verification, and validation of autonomous driving systems

• Coverage of systems beyond propulsion control, like driver interfaces and inte-
gration with in-vehicle infotainment

7. Acknowledgments

The authors would like to gratefully acknowledge funding provided by the VIN-
NOVA projects FUSE and ARCHER, as well as the support provided by the Volvo
Car Corporation and Scania CV AB.

References

[1] European Commission, G. Technology readiness levels (TRL), HORIZON
2020 - WORK PROGRAMME 2014-2015 General Annexes, Extract from Part
19 - Commission Decision C(2014)4995., http://ec.europa.eu/research/
participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-

36

http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

annex-g-trl_en.pdf.
URL http://ec.europa.eu/research/participants/data/ref/h2020/wp/
2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

[2] ISO 26262:2011 Road vehicles - Functional safety (2011).

[3] ISO 42010: Systems and software engineering - Recommended practice for ar-
chitectural description of software-intensive systems (2011).

[4] T. Ferris, On the methods of research for systems engineering, 7th Annual Con-
ference on Systems Engineering Research 2009 (April).

[5] T. Ferris, Engineering Design as Research, in: M. Mora, O. Gelman, A. L.
Steenkamp, M. Raisinghani (Eds.), Research Methodologies, Innovations and
Philosophies in Software Systems Engineering and Information Systems, IGI
Global, 2012. doi:10.4018/978-1-4666-0179-6.
URL http://services.igi-global.com/resolvedoi/resolve.aspx?doi=
10.4018/978-1-4666-0179-6

[6] J. Mårtensson, A. Alam, S. Behere, The Development of a Cooperative
Heavy-Duty Vehicle for the GCDC 2011: Team Scoop, IEEE Trans-
actions on Intelligent Transportation Systems 13 (3) (2012) 1033–1049.
doi:10.1109/TITS.2012.2204876.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6236179http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=6236179

[7] S. Behere, M. Törngren, D.-J. Chen, A reference architecture for
cooperative driving, Journal of Systems Architecture 59 (10, Part
C) (2013) 1095 – 1112, embedded Systems Software Architecture.
doi:http://dx.doi.org/10.1016/j.sysarc.2013.05.014.
URL http://www.sciencedirect.com/science/article/pii/
S1383762113000957

[8] The FUSE project. Functional safety and evolvable architectures for autonomy,
http://www.fuse-project.se/.
URL http://www.fuse-project.se/

[9] O. Wallmark, et al., Design and implementation of an experimental research and
concept demonstration vehicle, in: Vehicle Power and Propulsion Conference
(VPPC), 2014 IEEE, 2014, pp. 1–6. doi:10.1109/VPPC.2014.7007042.

37

http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-0179-6
http://dx.doi.org/10.4018/978-1-4666-0179-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-0179-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-0179-6
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6236179 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6236179
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6236179 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6236179
http://dx.doi.org/10.1109/TITS.2012.2204876
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6236179 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6236179
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6236179 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6236179
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6236179 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6236179
http://www.sciencedirect.com/science/article/pii/S1383762113000957
http://www.sciencedirect.com/science/article/pii/S1383762113000957
http://dx.doi.org/http://dx.doi.org/10.1016/j.sysarc.2013.05.014
http://www.sciencedirect.com/science/article/pii/S1383762113000957
http://www.sciencedirect.com/science/article/pii/S1383762113000957
http://www.fuse-project.se/
http://www.fuse-project.se/
http://www.fuse-project.se/
http://dx.doi.org/10.1109/VPPC.2014.7007042

[10] S. Behere, Architecting autonomous automotive systems: With an emphasis
on cooperative driving, Licentiate thesis, School of Industrial Technology and
Management, KTH The Royal Institute of Technology (May 2013).

[11] ETSI TR 102 863 V1.1.1 Local Dynamic Map (LDM) - Rational for and guid-
ance on standardization, http://www.etsi.org/deliver/etsi_tr/102800_
102899/102863/01.01.01_60/tr_102863v010101p.pdf (2011).
URL http://www.etsi.org/deliver/etsi_tr/102800_102899/102863/01.
01.01_60/tr_102863v010101p.pdf

[12] Z. Papp, C. Brown, C. Bartels, World modeling for cooperative intelligent ve-
hicles, in: Intelligent Vehicles Symposium, 2008 IEEE, 2008, pp. 1050–1055.
doi:10.1109/IVS.2008.4621272.

[13] H. Kopetz, The Complexity Challenge in Embedded System Design, in:
2008 11th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC), IEEE, 2008, pp. 3–12.
doi:10.1109/ISORC.2008.14.
URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
4519555http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4519555

[14] T. Fong, C. Thorpe, Vehicle teleoperation interfaces, Autonomous Robots 11 (1)
(2001) 9–18.

[15] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,
D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp,
D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen,
I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, S. Thrun,
Junior: The stanford entry in the urban challenge, in: M. Buehler, K. Iag-
nemma, S. Singh (Eds.), The DARPA Urban Challenge, Vol. 56 of Springer
Tracts in Advanced Robotics, Springer Berlin Heidelberg, 2009, pp. 91–123.
doi:10.1007/978-3-642-03991-1_3.
URL http://dx.doi.org/10.1007/978-3-642-03991-1_3

[16] The HAVE-it EU project. Deliverable D12.1 Architecture document,
http://haveit-eu.org/LH2Uploads/ItemsContent/24/HAVEit_212154_
D12.1_Public.pdf.
URL http://haveit-eu.org/LH2Uploads/ItemsContent/24/HAVEit_
212154_D12.1_Public.pdf

38

http://www.etsi.org/deliver/etsi_tr/102800_102899/102863/01.01.01_60/tr_102863v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102800_102899/102863/01.01.01_60/tr_102863v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102800_102899/102863/01.01.01_60/tr_102863v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102800_102899/102863/01.01.01_60/tr_102863v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102800_102899/102863/01.01.01_60/tr_102863v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102800_102899/102863/01.01.01_60/tr_102863v010101p.pdf
http://dx.doi.org/10.1109/IVS.2008.4621272
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4519555 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4519555
http://dx.doi.org/10.1109/ISORC.2008.14
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4519555 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4519555
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4519555 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4519555
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4519555 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4519555
http://dx.doi.org/10.1007/978-3-642-03991-1_3
http://dx.doi.org/10.1007/978-3-642-03991-1_3
http://dx.doi.org/10.1007/978-3-642-03991-1_3
http://haveit-eu.org/LH2Uploads/ItemsContent/24/HAVEit_212154_D12.1_Public.pdf
http://haveit-eu.org/LH2Uploads/ItemsContent/24/HAVEit_212154_D12.1_Public.pdf
http://haveit-eu.org/LH2Uploads/ItemsContent/24/HAVEit_212154_D12.1_Public.pdf
http://haveit-eu.org/LH2Uploads/ItemsContent/24/HAVEit_212154_D12.1_Public.pdf
http://haveit-eu.org/LH2Uploads/ItemsContent/24/HAVEit_212154_D12.1_Public.pdf

[17] J. Ziegler, et al., Making bertha drive: An autonomous journey on a historic
route, Intelligent Transportation Systems Magazine, IEEE 6 (2) (2014) 8–20.
doi:10.1109/MITS.2014.2306552.

[18] John Boyd. The essence of winning and losing. Unpublished lecture notes (1996).

[19] J. Kephart, D. Chess, The vision of autonomic computing, Computer 36 (1)
(2003) 41–50. doi:10.1109/MC.2003.1160055.

[20] M. C. Huebscher, J. A. McCann, A survey of autonomic comput-
ing—degrees, models, and applications, ACM Computing Surveys 40 (3)
(2008) 7:1–7:28. doi:10.1145/1380584.1380585.
URL http://doi.acm.org/10.1145/1380584.1380585

[21] J. Rasmussen, Skills, rules, and knowledge; signals, signs, and symbols, and
other distinctions in human performance models, Systems, Man and Cybernet-
ics, IEEE Transactions on SMC-13 (3) (1983) 257–266. doi:10.1109/TSMC.
1983.6313160.

39

http://dx.doi.org/10.1109/MITS.2014.2306552
http://dx.doi.org/10.1109/MC.2003.1160055
http://doi.acm.org/10.1145/1380584.1380585
http://doi.acm.org/10.1145/1380584.1380585
http://dx.doi.org/10.1145/1380584.1380585
http://doi.acm.org/10.1145/1380584.1380585
http://dx.doi.org/10.1109/TSMC.1983.6313160
http://dx.doi.org/10.1109/TSMC.1983.6313160

	Introduction
	Functional architecture
	Goals, Contribution, and Scope
	Research method
	Outline

	Functional components
	Perception
	Decision and control
	Vehicle platform manipulation

	Functionality distribution
	Functional reference architecture
	Stakeholders concerns
	Architecture
	Comparison with similar architectures

	Discussion
	Stakeholder concerns
	Influences from the technical architecture
	Reusing the vehicle platform
	Replacing the human
	Learning and continuous deployment

	Conclusion and future work
	Acknowledgments

