
Prototyping Cyber-Physical Systems
A hands-on approach to the Cyber- part

Sagar Behere

23 June 2015

Kungliga Tekniska Högskolan

1 / 45
Prototyping Cyber-Physical Systems

N

Disclaimer

This presentation contains personal opinions

2 / 45
Prototyping Cyber-Physical Systems

N

What does this program do?

#include <stdio.h>

main(t, ,a)
char ∗a;
{return!0<t?t<3?main(−79,−13,a+main(−87,1− ,
main(−86, 0, a+1)+a)):1,t< ?main(t+1, , a):3,main (−94, −27+t, a
)&&t == 2 ? <13 ?main (2, +1, ”%s %d %d\n”):9:16:t<0?t<−72?main(,
t,”@n’+,#’/∗{}w+/w#cdnr/+,{}r/∗de}+,/∗{∗+,/w{%+,/w#q#n+,/#{l,+,/n{n+\
,/+#n+,/#;#q#n+,/+k#;∗+,/’r :’d∗’3,}{w+K w’K:’+}e#’;dq#’l q#’+d’K#!/\
+k#;q#’r}eKK#}w’r}eKK{nl]’/#;#q#n’){)#}w’){){nl]’/+#n’;d}rw’ i;#){n\
l]!/n{n#’; r{#w’r nc{nl]’/#{l,+’K {rw’ iK{;[{nl]’/w#q#\
n’wk nw’ iwk{KK{nl]!/w{%’l##w#’ i; :{nl]’/∗{q#’ld;r’}{nlwb!/∗de}’c \
;;{nl’−{}rw]’/+,}##’∗}#nc,’,#nw]’/+kd’+e}+;\
#’rdq#w! nr’/ ’) }+}{rl#’{n’ ’)# }’+}##(!!/”)
:t<−50? ==∗a ?putchar(a[31]):main(−65, ,a+1):main((∗a == ’/’)+t, ,a\
+1):0<t?main (2, 2 , ”%s”):∗a==’/’||main(0,main(−61,∗a, ”!ek;dc \
i@bK’(q)−[w]∗%n+r3#l,{}:\nuwloca−O;m .vpbks,fxntdCeghiry”),a+1);}

3 / 45
Prototyping Cyber-Physical Systems

N

Which systems are we talking about?

Prototypes!!

Validation of concepts

Your hobby projects

Projects you’ll be involved in as researchers

E.g.: EU FP7 projects in robotics

Anything where it is not necessary to trim the system down to the
leanest possible

in terms of hardware and software

4 / 45
Prototyping Cyber-Physical Systems

N

Which systems are we talking about?

Low quantities (not mass production) or one off designs

Professional, certified tools not always available/used

Professional software shops not utilized

Multiple domain experts working on the project

Most are not good up-to-date programmers

No concerns about conformance to industrial safety standards or
product certification

5 / 45
Prototyping Cyber-Physical Systems

N

Hardware scale

Individual microcontrollers

8, 16, 32 bit
PIC, AVR,...

Starter kits for above

Typically with some peripherals on-board
LEDs, keypads, pots, LCD display, ...

Medium

Typically based on ARM
Beaglebone, Raspberry Pi, ...
USB, ETH, WiFi,...

Big league

”Proper” Intel processors
Core i7 etc.
Small form factor, SSDs

6 / 45
Prototyping Cyber-Physical Systems

N

Software scale

Bare metal

Tiny OSes

Typically compiled into the application
e.g. FreeRTOS, Erika Enterprise

Big league

Linux, Windows

7 / 45
Prototyping Cyber-Physical Systems

N

Proposition

Use the fattest stack possible
(and build up proficiency)

Use an operating system if at all possible

But think of i/o and realtime constraints

8 / 45
Prototyping Cyber-Physical Systems

N

Suggested pattern

9 / 45
Prototyping Cyber-Physical Systems

N

Why not low level i/o with Linux?

Kernel space programming is hard
different

Need to write drivers + user
libraries

Think: Concurrency, blocking,
reentrancy,...

Mistakes can crash entire system

Debugging kernel more difficult

Situation different if you have good drivers available

10 / 45
Prototyping Cyber-Physical Systems

N

Hard vs Soft Realtime

Hard realtime

strict determinism
bounded latencies
guaranteed worst case timing
=⇒ Industrial control, automotive, avionics, medical

Soft realtime

Execute a task according to a desired time schedule on average
Best effort
=⇒audio, video, VoIP

[source: Detlev Zundel’s CC-BY-SA licensed presentation ’The Xenomai Real-Time Development Framework’]

11 / 45
Prototyping Cyber-Physical Systems

N

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

Temporal determinism

Simple microcontrollers are temporally deterministic. Given an
instruction sequence and the clock frequency, one can calculate the
execution time.

Modern CPUs are not deterministic in this sense. Innovations like
caches, instruction scheduling, predictive execution, bus scheduling,
etc. make it impossible to calculate execution times even of small
instruction sequences. A paper at RTLWS11 showed that such
execution timings pass standard randomness tests! Although peak
performance increased by a factor of 20000 in the last 30 years,
worst case execution time decreased only by a factor of 200.

[source: adapted from Detlev Zundel’s CC-BY-SA licensed presentation ’The Xenomai Real-Time Development

Framework’]

12 / 45
Prototyping Cyber-Physical Systems

N

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

Is realtime needed?

What deadlines does the system have?

Does the system have to meet each and every deadline?

Can the system be split into a realtime and non-realtime part?

Can the realtime constraints on software be eliminated by using
suitable hardware?

[source: adapted from Detlev Zundel’s CC-BY-SA licensed presentation ’The Xenomai Real-Time Development

Framework’]

13 / 45
Prototyping Cyber-Physical Systems

N

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

A fully preemptive kernel

[source: adapted from Detlev Zundel’s CC-BY-SA licensed presentation ’The Xenomai Real-Time Development

Framework’]
14 / 45

Prototyping Cyber-Physical Systems

N

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

Degrees of preemption

[source: adapted from Detlev Zundel’s CC-BY-SA licensed presentation ’The Xenomai Real-Time Development

Framework’]

15 / 45
Prototyping Cyber-Physical Systems

N

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

Xenomai Adeos/I-Pipe architecture

[source: adapted from Detlev Zundel’s CC-BY-SA licensed presentation ’The Xenomai Real-Time Development

Framework’]

16 / 45
Prototyping Cyber-Physical Systems

N

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

PREEMPT RT vs Xenomai

[source: adapted from Detlev Zundel’s CC-BY-SA licensed presentation ’The Xenomai Real-Time Development

Framework’]

17 / 45
Prototyping Cyber-Physical Systems

N

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

Application partitioning

18 / 45
Prototyping Cyber-Physical Systems

N

Simulink models

Don’t ask the control engineer to write the controller in
C++

Code generation

Hand ”massaging” almost always needed
Execution timing/jitter guarantees need to be assured ← tough!

Direct execution

dSpace
xPC target
Arduino
Beagleboard (not realtime!)

19 / 45
Prototyping Cyber-Physical Systems

N

Therefore the suggested pattern

.

20 / 45
Prototyping Cyber-Physical Systems

N

Therefore the suggested pattern

But there is an annoyance...

21 / 45
Prototyping Cyber-Physical Systems

N

Communication

How will you send this?

struct {

uint8 t fix;

int32 t lat;

int32 t lon;

int32 t alt;

} t gpsDataPayload;

gcc’s attribute ((packed)) ? Then
never use -> or a pointer to the
struct

or this?

class gpsData {

private:

uint8 t fix;

int32 t lat;

int32 t lon;

int32 t alt;

public:

uint8 t getfix();

int32 t getlat();

int32 t getlon();

int32 t getalt();

};

22 / 45
Prototyping Cyber-Physical Systems

N

Two aspects of communication

Data transfer - protocols/mechanisms

TCP, UDP
Client/server, publish/subscribe, N-to-M, pipeline, ...

Data packaging

serialization/deserialization a.k.a marshalling/demarshalling
wire protocols

23 / 45
Prototyping Cyber-Physical Systems

N

Communication solutions

There are solutions that do both transfer and de/marshalling

CORBA, DDS
Typically big and heavy
Good luck running them on a small microcontroller

Solutions for transfer only

Transfer a binary blob of data. Don’t care what’s inside it.
Sender & Receiver need to know the actual data structure
TCP/UDP client server is the traditional way BUT
ZeroMQ is a modern way

Solutions for de/marshalling

Google protocol buffers
XML, JSON, BSON
Boost serialization containers

24 / 45
Prototyping Cyber-Physical Systems

N

Simulink direct execution

Guess which modern communication methods are supported by
Simulink?

NONE!

You are left banging
bits together

25 / 45
Prototyping Cyber-Physical Systems

N

Simulink direct execution

Guess which modern communication methods are supported by
Simulink?

NONE!

You are left banging
bits together

25 / 45
Prototyping Cyber-Physical Systems

N

Simulink direct execution

Simulink supports UDP/TCP

UDP → packet fragmentation. Data MUST be less than packet
size.
TCP → Non deterministic

You need a simple protocol

First 4 bytes → Message type
Make sure to get endian-ness right
Check padding of data structures
Tip: Do the hard work in Simulink. At other side, use memcpy() to
copy into struct buffer

Maybe you could use the CAN bus

Message frames usually restricted to 8 bytes

If your data is uint64 t ...

26 / 45
Prototyping Cyber-Physical Systems

N

Maximizing the fat stack

If the hardware can run a proper linux distribution (e.g. emdebian)

You have access to a gadzillion libraries..
.. and a bazillion languages

C, C++, Java, Python, Ruby, Scala, Haskell, Erlang, ...

Don’t be afraid to use multiple languages

Some language might have a library with the exact functionality you
need
Switching from a procedural to functional language may solve a
sub-problem elegantly
Some things are simply easier in high level languages (text
processing in C? Eeeek!)

Learn Inter-Process Communication (IPC)

Pipes, FIFOs, sockets, shared memory, mailboxes, queues

27 / 45
Prototyping Cyber-Physical Systems

N

Data logging

Data logging is not realtime [unless it is ;-)]

Needs to be done from a non-realtime task
Or preferably, on a separate computer

Typically, three things need to be logged

Timeseries data ← periodic
Error, exception and non-error messages ← event driven
Data associated with errors and exceptions← event driven

Periodic timeseries data size usually known in advance

Event driven messages and associated data may have unknown size

Tip: Log data in open and interoperable formats

Logs can be viewed in general purpose data analysis tools
Formats like csv, netCDF, HDF5 are desirable
Analyse in Matlab, GNU Octave, kst, Qtiplot or your own program

28 / 45
Prototyping Cyber-Physical Systems

N

HMI and Calibration

GUI must run in a separate thread, or better, in an independent
process

Receives data via IPC, typically sockets
So HMI and calibration can run on different computer

Make sure that received calibration data is sanitized!

A useful pattern for displaying data in HMI

logging-pattern

29 / 45
Prototyping Cyber-Physical Systems

N

Another useful pattern

Concerns of data transfer and de/marshalling still valid

30 / 45
Prototyping Cyber-Physical Systems

N

A logging workaround

31 / 45
Prototyping Cyber-Physical Systems

N

Communication: ZeroMQ

Data transfer independent of platform and language

Carries messages across inproc, IPC, TCP, TPIC, multicast

Smart patterns like pub-sub, push-pull, and router-dealer

High-speed asynchronous I/O engines

Excellent documentation [which begins with the phrase, ”Fixing the
World” ;-)]

Open source (LGPL with static linking exception), active community

http://www.zeromq.org

32 / 45
Prototyping Cyber-Physical Systems

N

Communication: DDS

Interoperable publish-subscribe with QoS

Data transfer as well as packaging

Fault tolerance (over unreliable media)

http://www.opensplice.com , http://www.rti.com

33 / 45
Prototyping Cyber-Physical Systems

N

Clock synchronization

If you have multiple computers in the system, the clocks often need
to be synchronized

But try to avoid this as far as possible, via smart architecture
choices

For simple microcontrollers, possible to use global clock signal

ntpd can (theoretically) sync clocks within 232 picoseconds

You can even sync to GPS time, if your system uses a GPS

But the gps device should have a PPS signal

34 / 45
Prototyping Cyber-Physical Systems

N

My three favorite platforms

Between them, they can take on practically anything

35 / 45
Prototyping Cyber-Physical Systems

N

Beaglebone black (or white)

36 / 45
Prototyping Cyber-Physical Systems

N

Beaglebone PRUs

Separate realtime processors on the silicon of main chip

Dual 32-bit RISC cores,
shared data, instruction
memories and an interrupt
controller (INTC)

8KB data memory and 8KB
instruction memory

12KB shared RAM

A small, deterministic
instruction set

37 / 45
Prototyping Cyber-Physical Systems

N

Arduino

Easy, easy, easy

Wide variety of devices

Naturally realtime

Matlab/Simulink integration makes it the poor man’s dSpace

38 / 45
Prototyping Cyber-Physical Systems

N

OROCOS

39 / 45
Prototyping Cyber-Physical Systems

N

OROCOS dataflows

40 / 45
Prototyping Cyber-Physical Systems

N

Example: Autonomous maze solving
robot

41 / 45
Prototyping Cyber-Physical Systems

N

Example: Robot motion control

42 / 45
Prototyping Cyber-Physical Systems

N

Some resources

”How fast is fast enough? Choosing between Xenomai and Linux for
realtime applications” - Brown and Martin

”The Xenomai real-time development framework: Recent and future
developments” - Detlev Zundel

”Middleware trends and market leaders 2011” - Dworak et al

ZeroMQ guide

”DDS - Advanced Tutorial using QoS to solve real world problems”
- Gordon Hunt, OMG Real-Time & Embedded Workshop July 9-12,
Arlington, VA

OROCOS component builders manual

43 / 45
Prototyping Cyber-Physical Systems

N

Recap: What have we seen?

A pattern for system partitioning

Two ways of achieving realtime with linux and their pros/cons

Data communication - transfer and packaging

Data logging

Clock synchronization

Some useful platforms

OROCOS Middleware

44 / 45
Prototyping Cyber-Physical Systems

N

Questions?

behere@kth.se

45 / 45
Prototyping Cyber-Physical Systems

N

