Cybersecurity for Highly Automated Driving A pragmatic approach

Sagar Behere Head of EE Integration Zoox Inc.

GOOD NEWS: CYBERSECURITY IS A SOLVED PROBLEM

GOOD NEWS: CYBERSECURITY IS A SOLVED PROBLEM BAD NEWS: IT DOES NOT SOLVE ITSELF

WHY CYBERSECURITY?

- Loss of safety
- Denial of service
- Theft
- IP protection
- Privacy and surveillance

THREAT ACTORS AND THREATS

Organized crime and industry

Long range remote attacks

Short range remote attacks

COMMON ATTACK SURFACES

Remote links and apps

Infotainment/Telematics-

On Board Diagnostics port

HOW ECUS GET COMPROMISED

Subverted contexts

6

Executing incorrect software-

Modifying calibration data

HOW NETWORKS GET COMPROMISED

Unintended participants

Cleartext communications-

Hijacked sessions

A CRYPTOGRAPY PRIMER

Image source: An Introduction to Cryptography. PGPi documentation.

SYMMETRIC KEY CRYPTOGRAPHY

Image source: An Introduction to Cryptography. PGPi documentation.

ASYMMETRIC KEY CRYPTOGRAPHY

DIGITAL SIGNATURES

~	

12

HASH FUNCTIONS

Image source: An Introduction to Cryptography. PGPi documentation.

13

HYBRID CRYPTOSYSTEMS ALICE Bob's public key Random key Session key (Symmetric) generator Cleartext

EXAMPLE - SECURE BOOT

CRYPTOGRAPHY IN AUTOMOTIVE PRACTICE

HARDWARE SECURITY MODULES

HSM / Feature	EVITA full	EVITA medium	EVITA light	HIS SHE	TCG TPM/MTM	Usual smartcard
Bootstrap integrity protection	Authentic and/or secure	Authentic and/or secure	Authentic and/or secure	Secure	Authentic	None
HW crypto algorithms (incl. key generation)	ECDSA,ECDH, AES/MAC, WHIRLPOOL/ HMAC	ECDSA,ECDH, AES/MAC, WHIRLPOOL/ HMAC	AES/MAC	AES/MAC	RSA, SHA-1/ HMAC	ECC, RSA, AES, 3DES, SHA-x & more possible (but seldom in parallel on chip)
HW crypto acceleration	ECC,AES, WHIRLPOOL (FPGA/ASIC)	AES (ASIC)	AES (ASIC)	AES (ASIC)	None	None
Internal CPU	Reprogrammable firmware & hardware (FPGA)	Reprogrammable firmware	None	None	Preset	Reprogrammable firmware
RNG	TRNG	TRNG	PRNG w/ external seed	PRNG w/ external seed	TRNG	TRNG

Source: Next Generation of Automotive Security: Secure Hardware and Secure Open Platforms. OVERSEE Project

SEED KEY PROTOCOL

Source: OBD = Open Barn Door? Security Vulnerabilities and Protections for Vehicular On-Board Diagnosis (OBD)

18

 \triangleright

LAYERING AND PARTITIONING

Applications

Operating system

Virtualization

Hardware

OPERATIONAL CYBERSECURITY MONITORING

- Intrusion Detection and Prevention System (IDPS)
- Independent network node(s) and SW modules in critical ECU(s)
- Monitors network traffic and ECU behavior in real-time
- Heuristics for determination of abnormal operation

SAE J3061: SAFETY AND SECURITY

System Safety Engineering Process Elements

Hazards : Threats Fault tree : Attack HARA : TARA

System Cybersecurity Engineering Process Elements

23

SAE J3061: PROCESS FRAMEWORK

NHTSA GUIDANCE ON CYBERSECURITY

Cybersecurity Best Practices for Modern Vehicles

Federal Automated Vehicles Policy

NIST AND DHS

Recommended Practice: Improving Industrial Control System Cybersecurity with Defense-in-Depth Strategies Industrial Control Systems Cyber Emergency Response Team September 2016

OTHER STANDARDS AND GUIDELINES

- ISO/IEC 9797-1: Security techniques Message Authentication Codes • ISO/IEC 11889: Trusted Platform Module
- ISO 12207: Systems and software engineering Software lifecycle processes

- ISO 15408: Evaluation criteria for IT Security ISO 27001: Information security management system • ISO 27002: Code of practice - Security ISO 27018: Code of practice – Handling PII / SPI (Privacy) • ISO 27034: Application security techniques

- ISO 29101: Privacy architecture framework
- ISO 29119: Software testing standard
- IEC 62443: Industrial network and system security

		_
-		

INTERESTING HACKS

28

THE 80/20 OF AUTOMOTIVE CYBERSECURITY

- encrypted and signed
- software
- "Larger" operating systems, like Linux, MUST be secured using techniques learned from Enterprise IT
 - Gateways should provide strong partitioning and firewalls

 \bullet

Communications with off-board systems MUST be cryptographically

ECUs should ONLY execute cryptographically signed and authenticated

29

OBVIOUS REMINDERS

- Security is a framework, not an add-on
- Security through obscurity DOES.NOT.WORK
 - Do not "home brew" cryptography

Do not half-bake security – If it is worth doing, it is worth overdoing

30

GOOD NEWS: CYBERSECURITY IS A SOLVED PROBLEM BAD NEWS: IT DOES NOT SOLVE ITSELF

QUESTIONS?

Ś

32