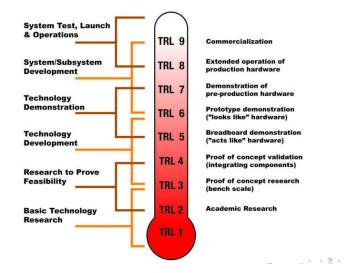


Quiz: Making it autonomous



▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

1 / 29

Where is academia's role?

2 / 29

Research in 'bits and pieces' \rightarrow Certified autonomous product

• Outstanding challenge for complex, autonomous systems

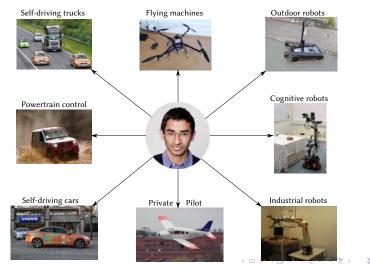
3 / 29

.

A holistic approach to systems autonomy For complex, intelligent, safety-critical systems

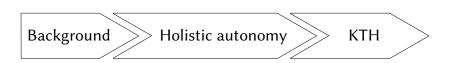
Sagar Behere

behere@kth.se

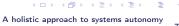

14 November 2014

ITA, São Jose dos Campos, Brazil

Δ.


Who am I?

A holistic approach to systems autonomy


What is Intelligence?

・ロト ・四ト ・ヨト ・ヨト A holistic approach to systems autonomy 7 / 29

What is Intelligence?

• The ability of a system to act appropriately in an uncertain environment

э

What is Intelligence?

- The ability of a system to act <u>appropriately</u> in an uncertain environment
- Appropriate action is that which increases the probability of success

What is Intelligence?

- The ability of a system to act <u>appropriately</u> in an uncertain environment
- Appropriate action is that which increases the probability of success
- Success is the achievement of behavioral sub-goals that support the system's ultimate goal

What is Intelligence?

- The ability of a system to act <u>appropriately</u> in an uncertain environment
- Appropriate action is that which increases the probability of success
- Success is the achievement of behavioral sub-goals that support the system's ultimate goal
- The criteria of success and the system's ultimate goal may be defined external to the intelligent system

(source: J. Albus, Outline of a theory of intelligence)

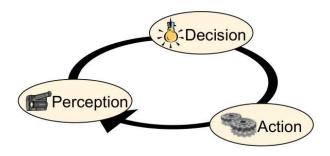
Δ.

What is autonomy?

◆□ ▶ ◆舂 ▶ ◆ き ▶ ◆ き ▶ … A holistic approach to systems autonomy

What is autonomy?

The ability to operate without human supervision/intervention



$\label{eq:approx} < \Box \succ < \boxdot \succ < \Xi \succ < \Xi \succ = \Xi$ A holistic approach to systems autonomy

Summary: Intelligent autonomy

Intelligent autonomy requires decisional processes

Decision: notion of deliberation, planning, prediction and evaluation of the outcomes of an action

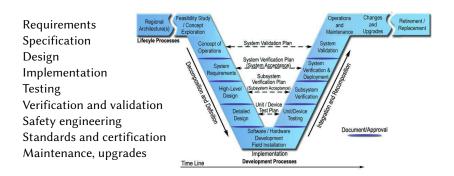
Holistic

.

ho·lis·tic $/h\bar{o}$ 'listik/ [adj.] parts \rightarrow intimately connected, and understandable \rightarrow only by reference to the whole

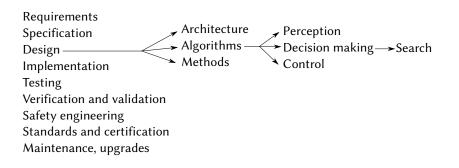
Holistic

ho·lis·tic $/h\bar{o}$ 'listik/ [adj.] parts \rightarrow intimately connected, and understandable \rightarrow only by reference to the whole

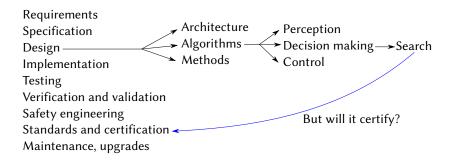

So what is necessary for a holistic approach to autonomy?

 \rightarrow A systems engineering perspective

.

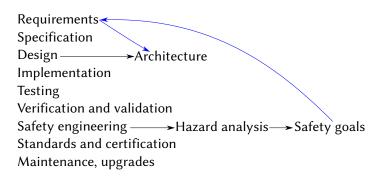


Systems engineering concerns


From algorithms to systems

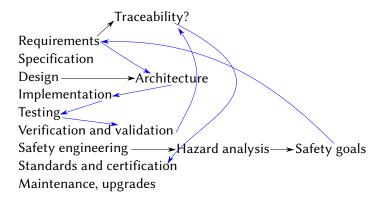
12 / 29

From algorithms to systems



Development process support

Requirements Specification Design Implementation Testing Verification and validation Safety engineering — Hazard analysis — Safety goals Standards and certification Maintenance, upgrades



Development process support

15 / 29

Development process support

Product complexity

	Sus/C	Brake	Steer	Wheel	Diff	Trans	Clutch	Eng	Driver
Susp				x					x
Brake				x					X
Steer				х					X
Wheel	х	х	х		x				
Diff				х		x			
Trans					x		X		
Clutch						x		x	
Eng							x		X
Driver		x	х				x	х	

X - Mechanical relations

A holistic approach to systems autonomy

Product complexity

	Sus/C	Brake	Steer	Wheel	Diff	Trans	Clutch	Eng	Driver
Susp		Р	Р	X+P	Р	Р	Р	Р	X+P
Brake	Р		Р	<u></u> <i>X</i> +Р	Р	Р	Р	Р	<u></u> <i>Х</i> +Р
Steer	Р	Р		<u></u> <i>Х</i> +Р	Р	Р	Р	Р	<u></u> <i>Х</i> +Р
Wheel	Х	Х	<i>X</i> +P		X				
Diff	Р	Р	Р	<i>X</i> +P		<u>Х</u> +Р	Р	Р	
Trans	Р	Р	Р	Р	<i>X</i> +P		<i>X</i> +P	Р	Р
Clutch		Р	Р		Р	<u>Х</u> +Р		<i>X</i> +P	Р
Eng	Р	Р	Р	Р	Р	Р	<u>Х</u> +Р		Р
Driver	Р	<u>X</u> +P	<u>X</u> +P		Р	Р	<u>X</u> +P	Р	

Δ.

P - Programmable relations

A holistic approach to systems autonomy

- 18 / 29

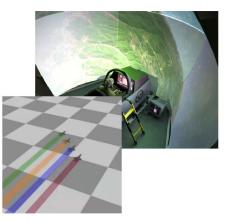
Key message

- 'Autonomy' is more than just another requirement
- Individual sensors, perception, control are all "getting there" but..
- ..problems of integrating them into a safe, total system are not even completely understood

.

- Analysis methods are inadequate
- Laws, regulations, standards are not up to speed
- Exploding state space, difficulties guaranteeing behavior
- ...

Main research units


- Center for Autonomous Systems (CAS)
- Automatic Control
- Mechatronics
- KTH Transport Labs

.

CAS - Unmanned aerial vehicles

- Cooperation with Swedish Air Force Air Combat Simulation Centre
- Pilot-UAV-Interaction
- Cooperative UAV control
- Search, Tracking, Formations Control, Task Assignment

▲圖▶ ▲ 国▶ ▲ 国▶

CAS - Unmanned ground vehicles

- Autonomous trucks: iQmatic
- Darpa Urban Challenge (part of MIT team)
- Intelligent Teleoperation for Search and Rescue

CAS - Underwater vehicles

 Autonomous Underwater Vehicles (AUVs) for seabed mapping and navigation

A holistic approach to systems autonomy

CAS - Indoor robotics

- Grasping
- Manipulation
- Robotic Assembly
- Navigation
- Understanding the environment
- Cooperation
- Intuitive robot programming
- Computer Vision

A holistic approach to systems autonomy

Automatic control

- Situation awareness
- Task/Mission (re)planning
- Predictive control under constraints
- Model identification
- Path planning

э

Mechatronics

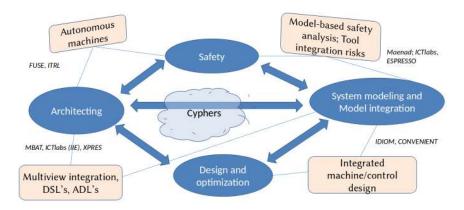
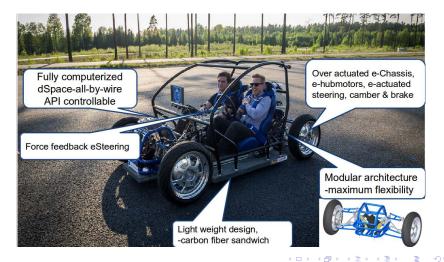



Image: A holistic approach to systems autonomy

26 / 29

Research Concept Vehicle

27 / 29

Collaboration opportunities

- Exchange
 - Master students, interns, thesis workers
 - PhD students (typically one semester)
 - Individual researchers
- Brazilian Industry
 - Joint projects
 - Assignments
 - Case studies

Takeaway

Research in 'bits and pieces' \rightarrow Certified autonomous product

• Outstanding challenge for complex, autonomous systems